SECOND AND THIRD QUARTERS 2005 QUARTERLY MONITORING REPORT STATUS OF CLOSURE AND WORKPLAN TO ABANDON MONITORING WELLS

SITE:

FORMER DISCOUNT TIRE CENTER #53

1200 I STREET, SACRAMENTO, SACRAMENTO COUNTY, CALIFORNIA

PREPARED FOR:

DOROTHY NOYES, et al, PROPERTY OWNER

POST OFFICE BOX 621 LINCOLN, CALIFORNIA, CALIFORNIA 95648

PREPARED BY:

APPLIED ENGINEERING AND GEOLOGY, INC.

POST OFFICE BOX 247 • 578 E STREET
LINCOLN, CALIFORNIA 95648
OFFICE 916.645.6014 • FAX 916.645.6098 • EMAIL aeg@psyber.com

TABLE OF CONTENTS

1.0	INIK	ODUCTION	J							
2.0	GENERAL SITE INFORMATION									
	2.1	Site Description	1							
	2.2	Geology / Hydrogeology								
3.0	PREV	VIOUS INVESTIGATIONS	1							
4.0	ACTI	VITIES DURING SECOND QUARTER 2005	5							
1.0	4.1									
	4.2	Ground Water Sampling								
	4.3	Ground Water Analytical Data								
	4.4	Discussion of Ground Water Analytical Results								
	4.5	Inorganic Geochemical and Biological Indicator Testing								
	7.5	4.5.1 Discussion of Inorganic Geochemical and Biological Indicators								
			17							
			18							
			19							
	4.6	AB2886 Submittal Report								
	4.7	Purge Water								
	т.,	Turge Water	_(
5.0	ACTIVITIES DURING THIRD QUARTER 2005									
	5.1	Ground Water Measurements								
	5.2	Ground Water Sampling								
	5.3	Ground Water Analytical Data								
	5.4	Discussion of Ground Water Analytical Results								
	5.5	AB2886 Submittal Report								
	5.6	Purge Water								
6.0	STAT	TUS OF REQUEST FOR NFAR STATUS	26							
7.0	WOR	KPLAN TO ABANDON MONITORING WELLS	26							
	7.1	Well Abandonment Procedures								
8.0	NEX'	Γ PHASE OF INVESTIGATION	27							
9.0	STAT	TEMENT OF LIABILITY	2.7							

TABLE OF CONTENTS

(Continued)

A .0	CUMULATIVE WATER LEVELS AND ANALYTICAL RESULTS A
	A.1 Cumulative Ground Water Elevation Data
	A.2 Cumulative Soil Analytical Results
	A.3 Cumulative Ground Water Analytical Results
	LIST OF TABLES
3-1	Monitoring Well Construction Details
4-1	Ground Water Elevation Data for April 26, 2005
4-2	Analytical Results of Ground Water Samples Collected April 26, 2005
	Analyzed by EPA Method 8260B for TPHg, BTEX, and MTBE;
	and by EPA Method 8015(M) for TPHd
4-3	Positive Analytical Results of Ground Water Samples Collected April 26, 2005
	Analyzed by EPA Method 8260B for Volatile Organic Compounds
4-4	Analytical Results for Water Samples Collected on April 26, 2005
	Analyzed by Methods Indicated for Geochemical and Biological Indicators 1
4-5	Summary of Geochemical and Biological Indicator Tests of Samples Collected
	April 26, 2005 Level of Indication of Biodegradation
4-6	Analytical Results for Water Samples Collected on April 26, 2005
	Analyzed by Methods Indicated for Organic Nutrient Indicators
4-7	Analytical Results of Water Samples Collected April 26, 2005
	Analyzed for Total Heterotrophic Bacteria
5-1	Ground Water Elevation Data for July 12, 2005
5-2	Analytical Results of Ground Water Samples Collected July 12, 2005
	Analyzed by EPA Method 8260B for TPHg, BTEX, and MTBE;
	and by EPA Method 8015(M) for TPHd
5-3	Positive Analytical Results of Ground Water Samples Collected July 12, 2005
	Analyzed by EPA Method 8260B for Volatile Organic Compounds
A-1	Ground Water Elevation Data for October 15, 2001 through Present
A-2	Analytical Results of Soil Samples Collected November 17, 2000
	Analyzed by EPA Methods 8015(M), 8010B, and 8020A
A-3	Analytical Results of Soil Samples Collected During Monitoring Well Installation
A 4	Analyzed by EPA Method 8260B and 8015(M) for TPHg, TPHd, and BTEX A
A-4	Analytical Results of Soil Samples Collected During Monitoring Well Installation
۸ 5	Analyzed by EPA Method 8260B for MTBE and Lead Scavengers
A-5	Analytical Results of Spoil Pile Collected July 26, 2001
A .	Analyzed by EPA Methods 8260B, 8015(M), and 6010
A-6	Analysis Performed on Soli Sambles Collected Allgiist 9 //UU A

LIST OF TABLES

(Continued)

A-/	Analytical Results of Soil Samples Collected August 9, 2001
	Analyzed by EPA Method 8260B for TPHg and BTEX;
	and by EPA Method and 8015(M) for TPHd and TPHmo
A-8	Analytical Results of Soil Samples Collected August 9, 2001
	Analyzed by EPA Method 6010B for the Five LUFT Metals
A-9	Analytical Results of Soil Samples Collected January 14, 2004
	Analyzed for TPHg, TPHd, TPHmo, BTEX, and MTBE
A-10	Analytical Results of Ground Water Samples Collected November 17, 2000
	Analyzed by EPA Methods 8015(M), 8010B, and 8020A
A-11	Analytical Results of Water Sample Collected July 26, 2001 from the 500
	Gallon Tank Analyzed by EPA Methods 8260B, 8015(M), and 6010
A-12	Analytical Results of Ground Water Samples
	Analyzed by EPA Method 8260B for TPHg, BTEX, and MTBE A7
A-13	Analytical Results of Ground Water Samples
	Analyzed by EPA Method 8260B for the Five Oxygenates and Lead Scavengers A9
A-14	Analytical Results of Ground Water Samples Collected January 14, 2004
	Analyzed by EPA Method 8260B for TPHg, BTEX, and MTBE;
	and by EPA Method 8015(M) for TPHd and TPHmo A10
A-15	Positive Analytical Results of Ground Water Samples
	Analyzed by EPA Method 8260B for Volatile Organic Compounds
	All Results in Parts Per Billion (ppb) A11
A-16	Positive Analytical Results ¹ of Ground Water Samples Collected January 14, 2004
	Analyzed for Volatile Halocarbons
A-17	Analytical Results for Water Samples Collected on April 26, 2005
	Analyzed by Methods Indicated for Geochemical and Biological Indicators A14
A-18	Analytical Results for Water Samples Collected on April 26, 2005
	Analyzed by Methods Indicated for Organic Nutrient Indicators
A-19	Analytical Results of Water Samples Collected April 26, 2005
	Analyzed for Total Heterotrophic Bacteria

LIST OF FIGURES

Site Vicinity Map
Generalized Site Map 3
Detailed Site Map
Ground Water Contours 04/26/05
Ground Water Analytical 04/26/05
Ground Water Contours 07/12/05
Ground Water Analytical 07/12/05

LIST OF APPENDICES

Appendix A	Cumulative Analytical
Appendix B	Monitoring Well Purge Data Sheets
Appendix C	Certified Laboratory Analytical Reports
Appendix D	AB2886 Submittal Report
Appendix E	Correspondence

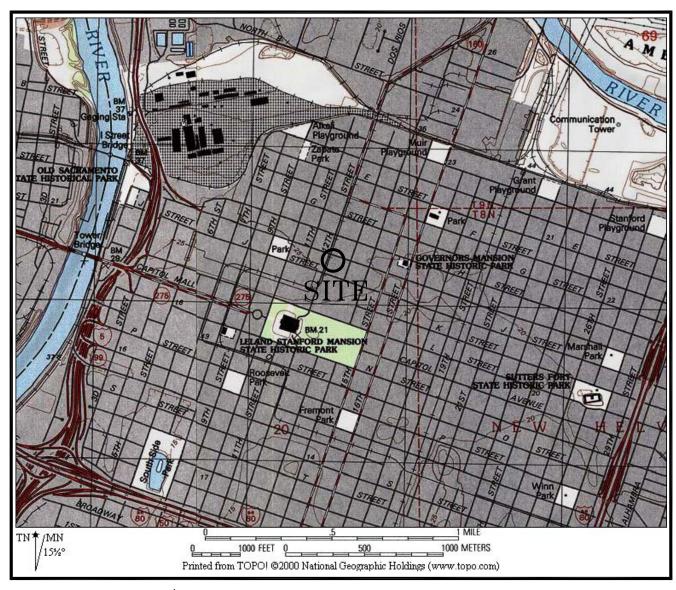
1.0 INTRODUCTION

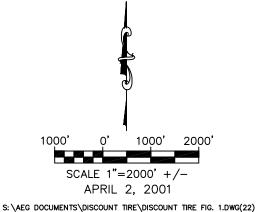
This Second & Third Quarters 2005, Quarterly Monitoring Report, Status of Closure, and Workplan to Abandon Wells (Report/Workplan) was prepared by Applied Engineering and Geology, Inc. (AEG), at the request of Dorothy Noyes, et al (Property Owner), of the subject Site. This Report documents the occurrence of environmental activities regarding the Former Discount Tire facility (Site) during April, May, and June (Second Quarter) and July, August, and September (Third Quarter). This Report is intended to comply with Title 23, Section 2652 (d) of the California Code of Regulations for this Site.

2.0 GENERAL SITE INFORMATION

2.1 Site Description

The Site is located at 1200 I Street, Sacramento, Sacramento County, California (see **Figure 1**). The Site is the location of a former automobile tire store (see **Figures 2** and **3**). It is also the former location of a gasoline service station that closed approximately 50 years ago. The Site is at an elevation of approximately 21 feet. Topography in the vicinity is relatively flat.

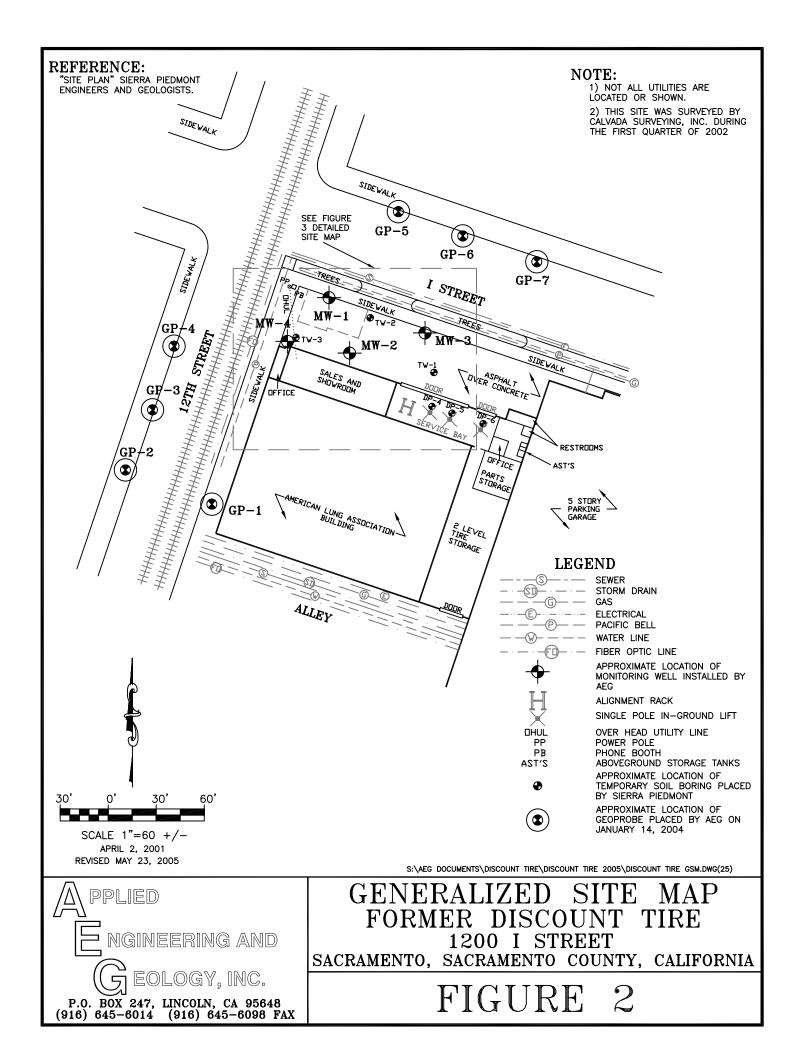

2.2 Geology / Hydrogeology

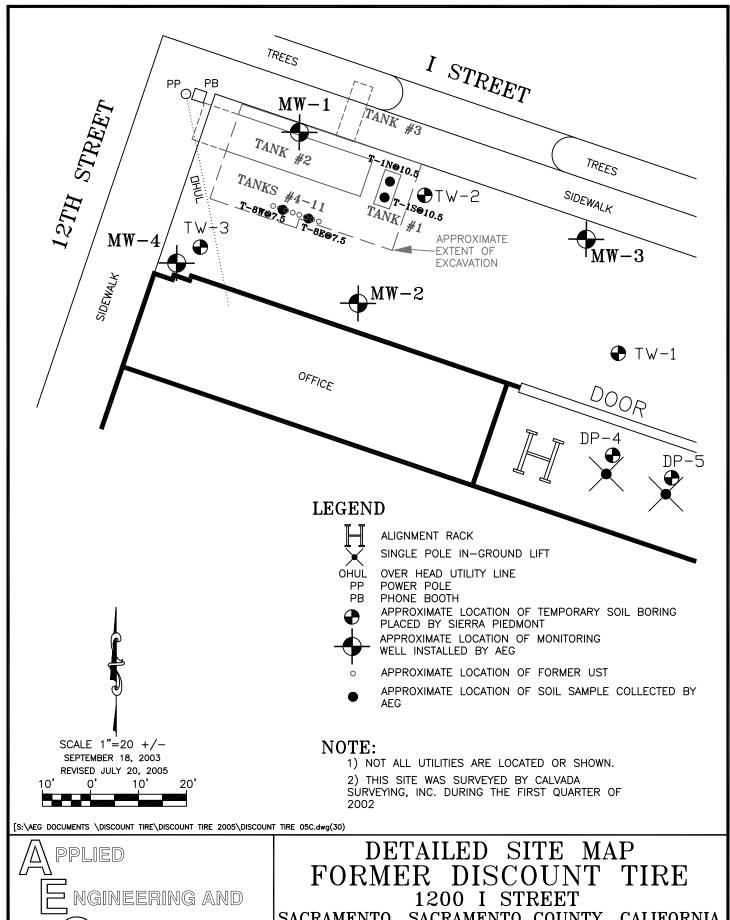

This Site lies on a nearly flat area that is part of the Sacramento Valley, an alluvial plain of continental deposits overlying a thick layer of marine sediments. The alluvium consists of fine sands, silts and clays. Soil beneath the Site is predominantly sands intermixed with silts and clays. Depth to ground water varies, but was reported to be at a depth of approximately 16 feet below ground surface (bgs) by Sierra Piedmont Engineers and Geologists (Sierra Piedmont) in *Limited Subsurface Investigation*, dated December 8, 2000. AEG has encountered ground water at depths that range from 15-19 feet bgs.

3.0 PREVIOUS INVESTIGATIONS

In 2000, Sierra Piedmont conducted a *Phase I Environmental Assessment* (Phase I) of the Site for Goodyear Tire & Rubber Company (Goodyear). Findings of the Phase I prompted Sierra Piedmont to propose a limited *Phase II Environmental Site Assessment* (Phase II Investigation). This Phase II Investigation included the use of ground penetrating radar at the Site and the placement of three temporary monitoring wells for the collection of soil and ground water samples.

On October 26, 2000, Sierra Piedmont was onsite to oversee Gasch & Associates, Inc. (G&A), as they conducted a geophysical investigation of the Site. G&A presented their findings in *Report of Findings for the Ground Penetrating Radar Data Acquisition at the I Street Discount Tire Center in Sacramento, California*, dated December 18, 2000. This investigation noted "a relatively deep anomaly, with the characteristics of a UST.".


NOT TO SCALE



SITE VICINITY MAP FORMER DISCOUNT TIRE

1200 I STREET SACRAMENTO, SACRAMENTO COUNTY, CALIFORNIA

FIGURE 1

EOLOGY, INC. P.O. BOX 247, LINCOLN, CA 95648 (916) 645-6014 (916) 645-6098 FAX

SACRAMENTO, SACRAMENTO COUNTY, CALIFORNIA

FIGURE

2nd & 3rd Q 2005, QMR, Status of Closure & WP to Abandon Wells

On November 17, 2000, a truck mounted direct push rig was utilized to collect soil and ground water from the subsurface of the Site.

Results of the Phase II Investigation determined petroleum hydrocarbons existed in soil and ground water beneath the Site. Analysis of the ground water also detected the presence of low concentrations of volatile organic compounds (VOCs) usually associated with dry cleaning establishments or vehicle maintenance operations. The analyses conducted were not complete. Soil samples were not analyzed for the benzene, toluene, ethylbenzene, and xylenes (BTEX) analytes and water samples were not analyzed for total petroleum hydrocarbons as gasoline (TPHg) or total petroleum hydrocarbons as diesel (TPHd). Ground water levels were not obtained, nor was a direction of ground water flow determined.

Analytical results from the Phase II Investigation are shown in **Appendix A**, **Tables A-2** and **A-10**. Based on analytical data from the Phase II Investigation, the County of Sacramento Environmental Management Department (County) directed that an investigation be conducted to determine the extent of soil and ground water contamination beneath the Site.

AEG prepared a *Site Contamination Workplan* (Workplan), dated April 12, 2001, which proposed the placement of three ground water monitoring wells at the Site, and performing a Sensitive Receptor Survey of the area around the Site. The Workplan was approved by the County on May 10, 2001.

Installation of the three ground water monitoring wells was initiated on July 18, 2001. During the field activities, underground storage tanks (USTs) were located at the Site, allowing only two of the three monitoring wells (MW-2 and MW-3) to be installed. AEG acquired permits to remove the USTs, and following tank removal activities completed the installation of monitoring wells.

Analytical results of samples collected during the installation of MW-2 and MW-3 prompted AEG to propose, and the County to approve, the installation of an additional ground water monitoring well (MW-4) at the Site, information as to the details and construction can be found in **Table 3-1**. Soil analytical results are presented in **Tables A-3** and **A-4**. Ground water analytical results are presented in **Table A-12**, **A-13**, and **A-15**.

TABLE 3-1 Monitoring Well Construction Details						
Well Number Total Depth (ft) Length of Screen (ft) Well Diameter (inches)						
MW-1	24.87	15	2			
MW-2	25.21	15	2			
MW-3	25.19	15	2			
MW-4	24.74	15	2			

September 2, 2005

On July 18, 2001, AEG utilized a backhoe to investigate the deep anomaly located by G&A in November 2000. Two USTs were located with the backhoe, and the investigation was suspended.

On July 19, 2001, while AEG was preparing to advance the borehole for MW-1, a UST was encountered during the hand augering procedure. At that time it was believed to be a third tank.

On July 26, 2001, AEG collected a water sample (see **Table A-11**) from the contents of Tank #1 (500 gal tank), and four soil samples of the spoil pile. The four soil samples were later composited by the laboratory, at a ratio of 4:1, into one sample for analysis (see **Table A-5**).

Between August 7, 2001 and August 13, 2001, AEG was onsite to remove the suspected three USTs. During excavation activities, AEG discovered that the suspected third UST encountered on July 19, 2001 was the other end of the large UST located on July 18, 2001. Additionally, nine other USTs were located during tank removal activities. A total of eleven USTs were located at the Site. Of the eleven USTs located, AEG removed nine, and abandoned the other two in-place (see Figure 3).

On September 28, 2001, AEG was again onsite to complete the installation of monitoring wells MW-1 and MW-4. Analytical results of samples collected during installation of the four monitoring wells, tank removals and abandonments, and ground water samples were presented along with a cross-sectional diagram of the Site and a Sensitive Receptor Survey in AEG's Preliminary Investigation and Evaluation Report, dated November 30, 2001. Analytical results of soil samples are presented in Tables A-3 and A-4. Ground water samples were not collected during construction.

In a letter dated February 8, 2002, the County directed the Property Owners to investigate the possibility of existing monitoring wells, in the downgradient direction, that could be used to indicate the presence or absence of offsite transport and to provide a workplan for additional investigation.

The Site was surveyed on February 28, 2002, as required by AB 2886 (Electronic Submission Laboratory Reports) of the California Legislature Article 5, Chapter 3, Division 7, Section 13195 -13198 Water Code with emergency regulations implemented by the State Water Resources Control Board.

At the request of Dorothy Noyes et al, Property Owner, AEG prepared Workplan for Additional Investigation (Workplan #2), dated April 1, 2003. Workplan #2 proposed the installation of seven Geoprobe® boreholes to a depth of 20 feet, with the collection and analysis of one soil sample and one ground water sample from each of the boreholes.

In a letter from Sacramento County, dated July 16, 2003, Laura Marshall-McLean (County) approved AEG's Workplan #2. However, she also suggested that the Closure Review Board review the Site information to determine if any additional information would be required.

2nd & 3rd Q 2005, QMR, Status of Closure & WP to Abandon Wells

The Closure Review Board met on September 12, 2003. The board felt that the current data were sufficient; however, upgradient wells would be needed. Laura Marshall-McLean (County) discussed this with Stan Walker (AEG). It was agreed that after the completion of Workplan #2 (Geoprobe® Investigation) the Site would be reassessed.

On January 14, 2004, AEG was onsite to install seven Geoprobe® boreholes as approved in Workplan #2. Results of Workplan #2 were presented in AEG's *Quarterly Monitoring Report*, First Quarter 2004 and Report of Geoprobe® Investigation, dated April 4, 2004. Analytical results of soil samples are presented in **Table A-9**. Analytical results of ground water samples are presented in **Tables A-14** and **A-16**.

After the Geoprobe® Investigation, AEG discussed the activities and analytical results with Laura Marshall-McLean (County). Ms. Marshall-McLean agreed with AEG that this Site does not pose a threat to human health or the environment, and that it should receive "No Further Action Required" (NFAR) status.

In AEG's *Quarterly Monitoring Report, Second Quarter 2004 and Request for Closure*, dated July 15, 2004, AEG requested that the Site receive NFAR status. Laura Marshall-McLean (County) requested that until "No Further Action Required" is granted, that the Site continue to be monitored on a quarterly basis.

Ernie Schofield (AEG) spoke with Laura Marshall-McLean (County) on December 15, 2004, to discuss Sacramento County's requirements, and options to move the Site to NFAR status. Ms. Marshall-McLean told AEG that to receive NFAR status, the total petroleum hydrocarbons as gasoline (TPHg) concentrations in ground water monitoring well MW-1 would need to show a declining trend, or the combined average trend at the Site would need to show a declining trend, or the occurrence of natural attenuation at the Site would need to be proven.

To proceed towards NFAR status, AEG produced *Quarterly Monitoring Report Fourth Quarter 2004, Status of Request for Closure and Evaluation of Remedial Options Workplan* (Workplan #3), dated January 31, 2005, proposing the following work be performed:

- Evaluation of the averaged declining trend;
- Natural attenuation testing; and,
- Evaluation of remedial options.

The County approved AEG's workplan to evaluate remedial options in a letter, dated March 28, 2005, with the following comments:

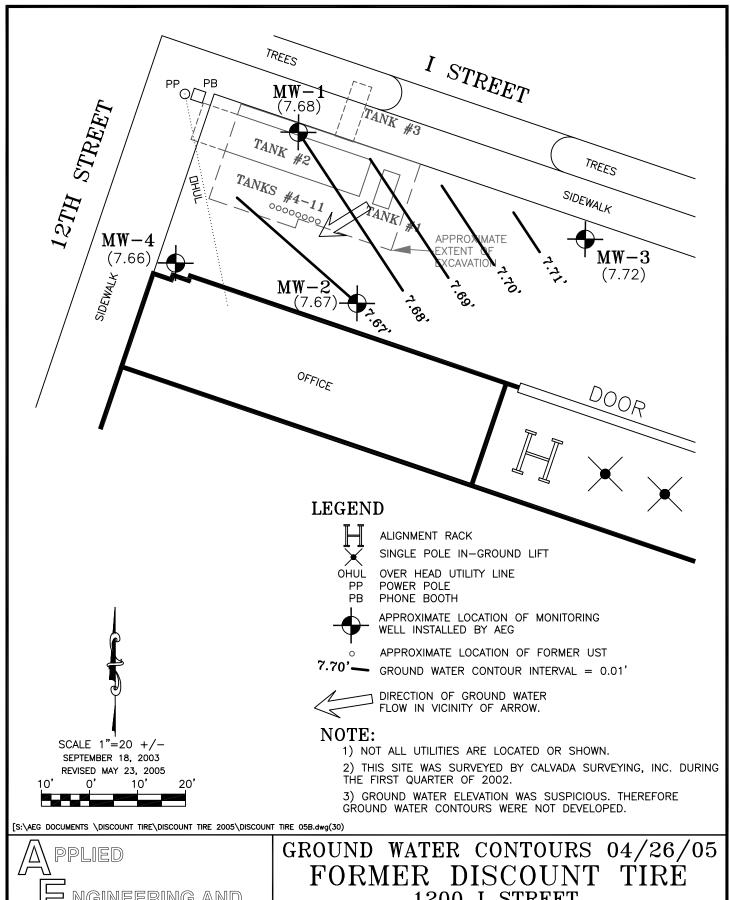
 A seasonal trend analysis has already been completed by this office. No statistically significant declining trend was found in either MW-1 or combined results from MW-1 and MW-4;

- Please prescreen potential remedial technologies. Each technology should be evaluated based upon 1) effectiveness, 2) implementability, and 3) cost; and,
- After prescreening, pick the best two or three technologies for further evaluation. Further evaluation may include an actual pilot study or may be the collection of additional data such as additional analysis of ground water for indication of biodegradation.

4.0 ACTIVITIES DURING SECOND QUARTER 2005

AEG was onsite April 26, 2005 for the collection of ground water data and ground water samples for laboratory analysis. All laboratory samples collected were analyzed as follows:

- MW-1 TPHg, TPHd, BTEX, MTBE, and VOCs;
- MW-2 TPHg, TPHd, BTEX, MTBE, and VOCs;
- MW-3 TPHg, TPHd, BTEX, MTBE, and VOCs; and,
- MW-4 TPHg, TPHd, BTEX, MTBE, and VOCs.


Additionally, AEG collected samples from all wells to be analyzed for biological indicators and aerobic bacterial plate counts.

4.1 Ground Water Measurements

The depth to ground water in the onsite monitoring wells were measured on April 26, 2005, as part of the quarterly monitoring. Ground water elevations were calculated by subtracting the depth to ground water in each well from the elevation of the top of the PVC casing. The elevation of the casing for each well was established relative to National Geodetic Survey (NGS) Monument JS1012. Ground water elevation data are shown in **Table 4-1**.

TABLE 4-1 Ground Water Elevation Data for April 26, 2005						
Well Top of Casing Depth to Water Elevation Flow Gradient (ft/ft)						
MW-1	21.83	14.15	7.68		0.0008	
MW-2	22.35	14.68	7.67	S 58° W		
MW-3	22.10	14.38	7.72	3 30 W		
MW-4	22.03	14.37	7.66	<u> </u>		

As presented in Figure 4, the ground water contours show the direction of ground water flow at South 58° West with a gradient of approximately 0.0008 feet per foot (ft/ft).

NGINEERING AND EOLOGY, INC. P.O. BOX 247, LINCOLN, CA 95648 (916) 645-6014 (916) 645-6098 FAX

1200 I STREET

SACRAMENTO, SACRAMENTO COUNTY, CALIFORNIA

FIGURE

4.2 Ground Water Sampling

On April 26, 2005, ground water samples were collected from each of the monitoring wells. Prior to collection of ground water samples, ground water from each of the monitoring wells was analyzed for dissolved oxygen (DO). Then, the wells were purged of at least three well volumes or until dry. The temperature, pH, conductivity, and oxidation-reduction potential (ORP) of the purge water were measured and recorded. Following collection of the ground water sample, ground water was again field analyzed for DO. These measurements and other field data are shown on the purge sheets in **Appendix B**.

4.3 Ground Water Analytical Data

Ground water samples were analyzed by EPA Method 8260B for total petroleum hydrocarbons as gasoline (TPHg); benzene, toluene, ethylbenzene, and xylenes (BTEX); methyl tert butyl ether (MTBE); and volatile organic compounds (VOCs), and by EPA Method 8015(M) for total petroleum hydrocarbons as diesel (TPHd). The samples were collected and transported under strict chain of custody and in accordance with EPA's SW 846 guidelines. The samples were preserved on ice and transported to Kiff Analytical for analysis. Analytical results are tabulated in **Tables 4-2** and **4-3**, and positive analytical results are presented in **Figure 5**. Copies of the certified analytical laboratory results are included in **Appendix C**.

TABLE 4-2 Analytical Results of Ground Water Samples Collected April 26, 2005 Analyzed by EPA Method 8260B for TPHg, BTEX, and MTBE; and by EPA Method 8015(M) for TPHd All Results in Parts Per Billion (ppb)							
Sample ID	ТРНд	TPHd	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
MW-1	4,000	<1,500	<0.50	<0.50	2.3	0.86	<0.50
MW-2	360	<200	<0.50	<0.50	<0.50	<0.50	0.75
MW-3	<50	<50	<0.50	<0.50	<0.50	<0.50	0.93
MW-4	1,100	<300	<0.50	<0.50	<0.50	<0.50	0.64

TPHg = Total petroleum hydrocarbons as gasoline

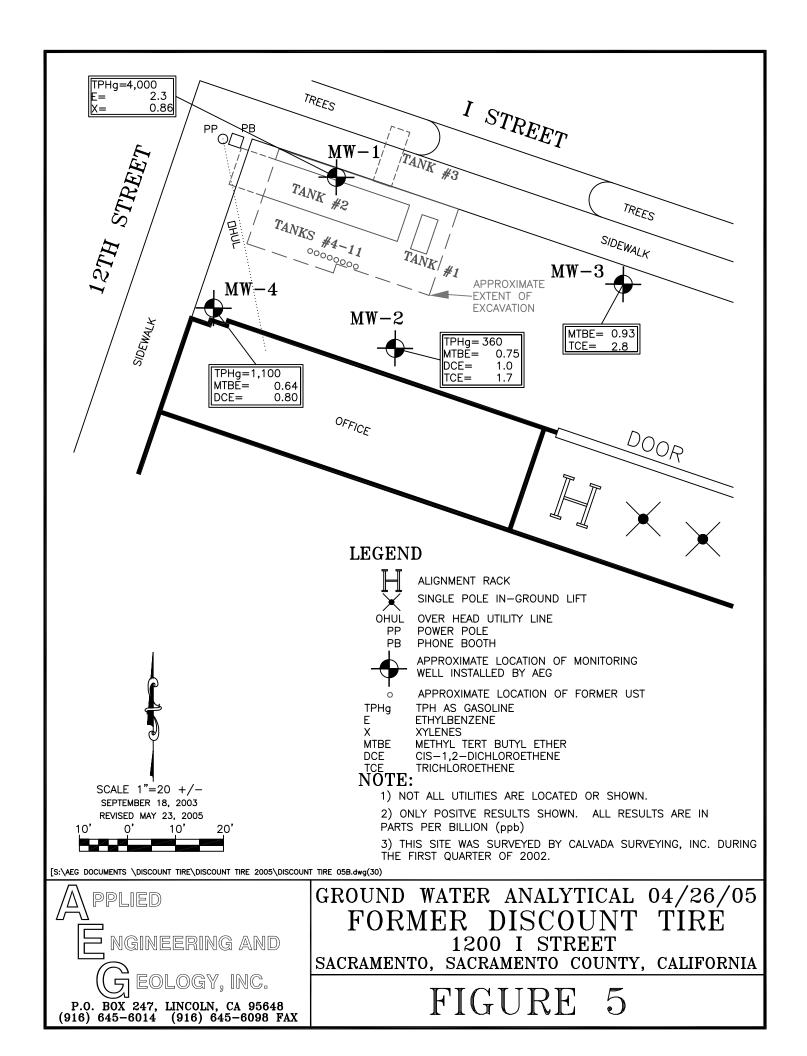
TPHd = Total petroleum hydrocarbons as diesel

MTBE = Methyl tert butyl ether

Laboratory note: "The Method Reporting Limit for TPH as Diesel is increased due to interference from Gasoline-Range Hydrocarbons for samples MW-1, MW-2, and MW-4."

\mathbf{T}	٨	RI	F	4.	-3

Positive Analytical Results of Ground Water Samples Collected April 26, 2005 Analyzed by EPA Method 8260B for Volatile Organic Compounds All Results in Parts Per Billion (ppb)


Sample ID	cis-1,2- Dichloroethene	Trichloroethene	Vinyl Chloride	
MW-1	<0.50	<0.50	<0.50	
MW-2	1.0	1.7	<0.50	
MW-3	<0.50	2.8	<0.50	
MW-4	0.80	<0.50	<0.50	

4.4 Discussion of Ground Water Analytical Results

Laboratory analytical results from the April 26, 2005 sampling event indicate that ground water beneath the Site contains concentrations of petroleum hydrocarbons and VOCs.

A review of the laboratory analytical data indicates the following:

- TPHg- Three of the four ground water samples analyzed contained concentrations of total petroleum hydrocarbons as gasoline (TPHg) above the method reporting limit (MRL). The highest concentration was reported in *MW-1*, at 4,000 parts per billion (ppb).
- TPHd- None of the ground water samples analyzed contained concentrations of total petroleum hydrocarbons as diesel (TPHd) above their MRLs. It should be noted that *MW-1*, *MW-2*, and *MW-4* had higher MRLs due to interference from gasoline-range hydrocarbons.
- BTEX- MW-1 was the only sample analyzed to contain any of the benzene, toluene, ethylbenzene, and xylenes (BTEX) constituents above their MRLs. MW-1 was reported to contain ethylbenzene at a concentration of 2.3 ppb and xylenes at 0.86 ppb.
- MTBE- Three of the four ground water samples analyzed contained concentrations of methyl tert butyl ether (MTBE) above the MRL. The highest concentration was reported in *MW-3*, at 0.93 ppb.

September 2, 2005

VOCs-Historically, samples collected at the Site have been analyzed for 29 volatile organic compounds (VOCs). Of these, only three have been reported above their MRLs (cis-1,2- dichloroethene, trichloroethene, and vinyl chloride).

> Two of the four ground water samples analyzed Cis-1,2- Dichloroethene-

> > contained concentrations of cis-1,2- dichloroethene above the MRL. The highest concentration was

reported in MW-2, at 1.0 ppb.

Trichloroethene-Two of the four ground water samples analyzed

> contained concentrations of trichloroethene above the MRL. The highest concentration was reported in

MW-3, at 2.8 ppb.

Vinyl Chloride-None of the four ground water samples analyzed

contained concentrations of vinyl chloride above the

MRL.

4.5 **Inorganic Geochemical and Biological Indicator Testing**

Laura Marshall-McLean (County) approved additional analytical tests be performed during the Second Quarter Monitoring event in an Email dated April 14, 2005 (Appendix E). Therefore, in conjuction with the Second Quarter sampling event, on April 26, 2005, AEG collected ground water samples from monitoring wells MW-1, MW-2, MW-3, and MW-4 for the following additional analyses:

- Inorganic geochemical and biological indicators and nutrients; and,
- Bacterial plate count of aerobic total heterotrophs.

Ground water samples were analyzed for geochemical and biological indicators by EPA Method 350.2 for ammonia as nitrogen; by EPA Method 351.3 for total kjeldahl nitrogen (TKN); by Standard Method 2320B for total alkalinity as CaCO₃; by EPA Method 300.0 for sulfate, nitrate as nitrogen, nitrite as nitrogen, and ortho phosphate (as phosphate); by EPA Method 200.7 for potassium; by Standard Method 3500 for ferrous iron; and by EPA Method 200.7 for total dissolved iron. These samples were transported under strict chain of custody to Kiff Analytical for analysis. Ground water samples collected and analyzed for aerobic total heterotrophs by Standard Methods 9215B modified were transported under strict chain of custody to CytoCulture Environmental Biotechnology (CytoCulture) in Richmond, California for analysis.

Results for these analyses are presented in **Tables 4-4**, **4-6**, and **4-7** and in **Appendix A**, **Tables A-17**, **A-19**, and **A-20**. **Tables 4-5** and **A-18** summarize the geochemical and biological indicator

Certified Laboratory Analytical Reports.

4.5.1 Discussion of Inorganic Geochemical and Biological Indicators

AEG collected ground water samples from four monitoring wells during the Second Quarter 2005 sampling event to be analyzed for inorganic geochemical and biological indicators. Results of the geochemical and biological indicator testing are presented in **Table 4-4**.

test results. Copies of the certified analytical laboratory report are included as **Appendix C** -

TABLE 4-4 Analytical Results for Water Samples Collected on April 26, 2005 Analyzed by Methods Indicated for Geochemical and Biological Indicators All Results in Parts Per Million (ppm)								
Sample	DO Before Purge	DO After Purge	Nitrate EPA 300.0	Nitrite EPA 300.0	Sulfate EPA 300.0	TDI EPA 200.7	Ferrous Iron (Fe ⁺²) SM 3500	Alkalinity as CaCO ₃ SM 2320B
MW-1	1.90	0.49	<0.10	<0.10	3.4	4.30	4.3	530
MW-2	2.19	1.15	1.5	<0.10	57	<0.100	<0.10	400
MW-3	2.14	0.98	4.1	<0.10	57	<0.100	<0.10	360
MW-4	2.23	0.44	<0.10	<0.10	16	0.837	2.0	460

DO = Dissolved Oxygen: readings are in milligram per liter (mg/L)

TDI = Total Dissolved Iron

The American Society for Testing and Materials, 1998 (ASTM) guidelines suggest that inorganic geochemical indicators of biodegradation may be included in secondary lines of evidence that natural attenuation is occurring. Changes in the composition of total petroleum hydrocarbons can be correlated to the depletion of electron acceptors due to biodegradation of the contaminants.

The inorganic composition of ground water where biodegradation is occurring demonstrates patterns of:

- Decreased dissolved oxygen (DO), nitrate (NO₃), ferric iron (Fe⁺³), and sulfate (SO₄); and,
- ☐ Increased alkalinity and ferrous iron (Fe⁺²) concentration.

The electron acceptors are usually depleted from ground water in the following order:

	Oxygen
	Nitrogen [Nitrate $(NO_3) \rightarrow Nitrite(NO_2)$]
	Iron [Ferric (Fe ⁺³) \rightarrow Ferrous (Fe ⁺²)]
П	Sulfur [Sulfate (SO ₄) \rightarrow Sulfite (SO ₂)]

Therefore, if ground water containing TPHg has a state of decreased DO, nitrate, ferric iron, and sulfate along with increased alkalinity and ferrous iron, natural attenuation processes are changing the composition of petroleum hydrocarbons. A review of these inorganic geochemical and biological indicators from samples collected from six monitoring wells reveal the following:

<u>Dissolved Oxygen</u> DO readings collected from the four wells, indicate low to moderate levels of DO in ground water beneath the Site. The average concentration of DO before purge in the four wells is 2.12 milligrams per liter (mg/L) and after purge is 0.77 mg/L. All monitoring wells indicate lower concentrations of DO after purging. The lower DO readings after purge indicates that aerobic biodegradation is occurring or has occurred beneath the Site.

Nitrates The concentration of nitrates ranged from < 0.10 to 4.1 mg/L, with two of the four wells containing a concentration above the MRL. Of these two wells above the MRL, the average concentration was 2.8 mg/L. Plotting the concentration of nitrates indicates a general decrease across the Site, in the direction of ground water flow, which correlates with the impacted ground water plume. The decreased level in nitrogen, especially in the state of nitrate in the three wells with the highest concentrations indicates that biodegradation has occurred.

Iron Total Dissolved Iron (TDI) was detected in two of the four samples collected. MW-1 and MW-4 were reported to contain concentrations of 4.30 and 0.837 mg/L, respectively. Ferrous Iron (Fe⁺²) was also detected in two of the four samples collected, ranging between 2.0 mg/L in the sample collected from MW-4 to 4.3 mg/L in the sample collected from MW-1. The two samples that contained elevated concentrations of TDI also contained the highest concentrations of TPHg. Of the four samples, only these two samples were reported to contain concentrations of Fe⁺². Concentrations of TDI were equal to the reported concentration of Fe^{+2} reported in MW-1. Therefore, the concentration of Ferric Iron (Fe⁺³) (computed as TDI minus Fe⁺²) indicates that all of the Ferric Iron has oxidized to Ferris Iron in MW-1. A negative value for Ferric Iron in MW-4 could be due to the different methods on analysis. The lack of Ferric Iron would indicate that ground water near these wells is changing from aerobic to that of anaerobic conditions. Neither an increase or decrease has been observed in MW-1 and a decrease has been observed in MW-4, suggesting a change from aerobic to anaerobic conditions is not occurring.

2nd & 3rd Q 2005, QMR, Status of Closure & WP to Abandon Wells

<u>Sulfate</u> Sulfate was detected in all of the four samples collected, ranging from 57 mg/L in *MW-2* and *MW-3* to 3.4 mg/L in *MW-1*. The highest concentrations of sulfate appear to be in wells that contain lower to no concentrations of TPHg (*MW-2* and *MW-3*). This decrease in the reported concentration of sulfate indicates that aerobic biodegration may be occurring or has occurred beneath the Site.

Alkalinity The values of alkalinity in samples collected and analyzed ranged from 530 mg/L in MW-1 to 360 mg/L in MW-3, with an average concentration of 437.5 mg/L. There is an increase in alkalinity in samples from wells with high concentrations of TPHg, indicating that aerobic biodegradation may be occurring or has occurred beneath the Site.

Table 4-5 summarizes the geochemical and biological indicator test results, and discussed below.

TABLE 4-5 Summary of Geochemical and Biological Indicator Tests of Samples Collected April 26, 2005 Level of Indication of Biodegradation								
Sample Total Number of Indicators Dissolved Oxygen Nitrates Iron Sulfates Alkalinity								
MW-1	5	Χ	Χ	Χ	Χ	Χ		
MW-2	0	-	-	-	-	-		
MW-3	1	Χ	-	-	-	-		
MW-4	4	Χ	Χ	-	Χ	Χ		

X = Possible indication that biodegradation has occurred or is occurring.

= No indication that biodegradation has occurred or is occurring.

<u>High Indication of Biodegradation</u> - The samples collected from MW-1 and MW-4 had four or more indicators that biodegradation has occurred or is occurring. Analytical results from this Second Quarter sampling event show that ground water collected from these two wells contain the highest concentrations of total petroleum hydrocarbons as gasoline (TPHg).

<u>Moderate Indication of Biodegradation</u> - None of the samples collected had three indicators that biodegradation has occurred or is occurring.

<u>Low Indication of Biodegradation</u> - The sample collected from MW-3 had only one indicator that biodegradation has occurred or is occurring. Analytical results from this Second Quarter sampling event show that ground water collected from this well does not contain concentrations of TPHg. However, minor concentrations of Trichloroethene (TCE) were reported.

No Indication of Biodegradation - The sample collected from MW-2 did not show any indicators that biodegradation had occurred or is occurring. Analytical results from this Second Quarter sampling event show that ground water collected from this well does contain concentrations of TPHg, as well as minor concentrations of methyl tert butyl ether (MTBE), Cis-1,2-Dichloroethene (DCE), and TCE.

4.5.2 Nutrient Testing

Select nutrients were analyzed to help identify if any nutrients were missing or in limited supply in the ground water at the Site. A shortage of certain nutrients could help explain why there has not been a greater reduction of petroleum hydrocarbons by biodegradation at the Site. Analytical results of select nutrients are presented in Table 4-6 and A-25.

TABLE 4-6 Analytical Results for Water Samples Collected on April 26, 2005 Analyzed by Methods Indicated for Organic Nutrient Indicators All Results in Parts Per Million (ppm)								
Sample ID	Ammonia as Nitrogen EPA 350.2 Ortho-Phosphate EPA 300.0 EPA 351.3 Potassium EPA 200							
MW-1	<0.10	0.56	2.49					
MW-2	MW-2 <0.10		<0.50	3.84				
MW-3	<0.10 0.11 <0.50 3.87							
MW-4	< 0.10	<0.10	<0.50	2.14				

Results from these analyses indicate the following:

- Ammonia None of the samples were reported to contain concentrations of ammonia above the method reporting limit (MRL).
- Ortho-phosphate One of the four samples was reported to contain concentrations of ortho-phosphate above the MRL. MW-3 was reported to contain a concentration of 0.11 mg/L. The three wells reported to contain concentrations of petroleum hydrocarbons (MW-1, MW-2, and MW-3) do not have ortho-phosphate at a concentration greater than the MRL.

- Total Kjeldahl Nitrogen (TKN)- One of the four samples was reported to contain concentrations of TKN above the MRL. MW-1 was reported to contain a concentrations of 0.56 mg/L.
- Potassium All of the four samples were reported to contain concentrations of potassium above the MRL, ranging from 2.14 mg/L in MW-4 to 3.87 mg/L in MW-3. The two samples with the lowest levels of potassium were also the samples from wells reported to have the highest concentrations of TPHg (MW-1 and MW-4).

The analytical results for nutrients present in ground water indicate that three nutrients (ammonia, ortho-phosphate, and TKN) are either not present or is in limited supply in ground water from wells with concentrations of gasoline range petroleum hydrocarbons. None of the samples collected and analyzed were reported to contain ammonia above the MRL. The lowest levels of potassium were reported in wells with the greatest concentrations of TPHg, which may suggest that potassium has been utilized for aerobic biodegradation.

According to a note in CytoCultures' website: "ammonia and ortho-phosphate are limiting nutrients required for microbial growth and activity. Ammonia is a preferred nitrogen source and ortho-phosphate is a preferred phosphorous source for most soil bacteria. Biodegradation activity could potentially be limited by low levels of these nutrients even if all other growth needs are available. Depletion of these nutrients, as compared to control wells outside of contaminated areas, can also be used as indicators of biodegradation activity".

Missing or limited nutrients, if increased in quantity, under the right conditions can accelerate the growth of hydrocarbon degrading bacteria at the Site. Based on analytical results of ammonia and phosphate in ground water, it appears that the addition of these organic nutrient may be effective in increasing the growth of hydrocarbon degrading bacteria at the Site. However, since there has been no clear decrease of potassium, it is uncertain that the addition of potassium would increase the growth of hydrocarbon degrading bacteria at the Site.

4.5.3 Discussion of Bacteria Enumeration Assays

AEG collected ground water samples from the four monitoring wells on April 26, 2005 to be analyzed by CytoCulture Environmental Biotechnology (CytoCulture) using Standard Method 9215B for total heterotrophic bacteria using plate counts. For a complete description on the method of testing see the CytoCulture Analytical Results in Appendix C. Results of the bacteria enumeration assays are presented in Table 4-7 and A-26.

September 2, 2005

TABLE 4-7

Analytical Results of Water Samples Collected April 26, 2005 Analyzed for Total Heterotrophic Bacteria All Results in Colony Forming Units per Milliliter (cfu/ml)

Sample ID	Sample Date	Target Hydrocarbons Tested	Total Heterotrophs (cfu/ml)
MW-1	04/26/05	Gasoline/Diesel	4 x 10 ³
MW-2	04/26/05	Gasoline/Diesel	2 x 10 ³
MW-3	04/26/05	Gasoline/Diesel	3 x 10 ³
MW-4	04/26/05	Gasoline/Diesel	3 x 10 ³
Sterile Water	04/27/05	Gasoline/Diesel	0
Air Control	04/27/05	Gasoline/Diesel	0
Positive Control	04/27/05	Gasoline/Diesel	8 x 10 ⁹

cfu/ml = colony forming units per milliliter

Laboratory footnote: Reporting Limit for enumeration data is 1.0 x 10¹ cfu/ml

An excerpt from CytoCulture's website notes that total heterotrophic plate counts determine the total number of bacteria able to grow on a wide variety of carbon/energy sources. Hydrocarbon degrading bacterial plate counts enumerate populations of bacteria that have the ability to degrade gasoline, jet fuel, diesel, and/or other hydrocarbons.

As shown in **Table 4-7**, total heterotrophs are present in ground water beneath the Site, ranging between 2,000 cfu/ml in *MW-2* to 4,000 cfu/ml in *MW-1*. In comparison, CytoCulture's control samples contained 8,000,000,000 cfu/ml of total heterotrophs.

4.5.4 Conclusions

As the results indicate, some amount of biological activity appears to be occurring or has occurred at the Site. AEG believes that the monitoring wells within proximity to and downgradient of the former tank cavities have more indicators that natural attenuation is occurring.

AEG also concludes that the wells are depleted of the proper electron acceptors for aerobic biodegradation and possibly proper nutrients may also be deficient for the growth of hydrocarbon consuming bacteria.

4.6 AB2886 Submittal Report

The Electronic Deliverable Format 1.2i (EDF) Data associated with the Second Quarter 2005 sampling event have been submitted. The EDF of this Report in PDF format will be uploaded when approved by the Client. Cumulative EDF uploads for Former Discount Tire are presented in the EDF Submittal Report, located in **Appendix D**.

4.7 Purge Water

Approximately 22 gallons of purge water were generated during the Second Quarter 2005 sampling event. On June 20, 2005, all purge water was transported and disposed of by InStrat of Davis, California.

5.0 ACTIVITIES DURING THIRD QUARTER 2005

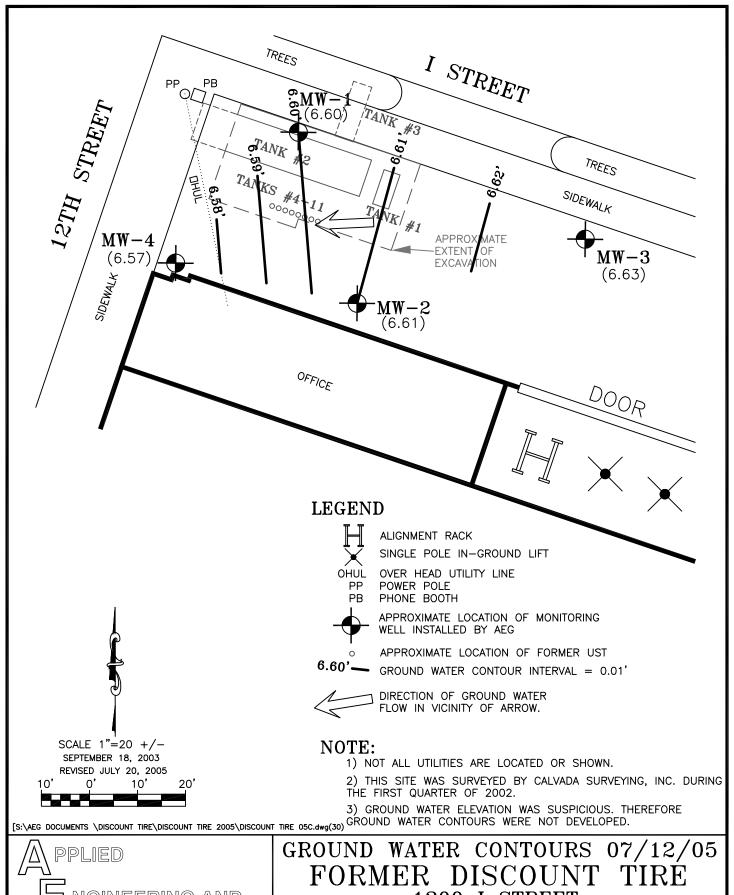
AEG was onsite July 12, 2005 for the collection of ground water data and ground water samples for laboratory analysis. All laboratory samples collected were analyzed as follows:

- MW-1 TPHg, TPHd, BTEX, MTBE, and VOCs;
- MW-2 TPHg, TPHd, BTEX, MTBE, and VOCs;
- MW-3 TPHg, TPHd, BTEX, MTBE, and VOCs; and,
- MW-4 TPHg, TPHd, BTEX, MTBE, and VOCs.

5.1 Ground Water Measurements

The depth to ground water in the onsite monitoring wells were measured on July 12, 2005, as part of the quarterly monitoring. Ground water elevations were calculated by subtracting the depth to ground water in each well from the elevation of the top of the PVC casing. The elevation of the casing for each well was established relative to National Geodetic Survey (NGS) Monument JS1012. Ground water elevation data are shown in **Table 5-1**.

TABLE 5-1 Ground Water Elevation Data for July 12, 2005								
Well Top of Casing Depth to Water Elevation Flow Gradient (ft/ft)								
MW-1	21.83	15.23	6.60					
MW-2	22.35	15.74	6.61	S 87° W	0 0000			
MW-3	22.10	15.47	6.63	3 0/ W	0.0008			
MW-4	22.03	15.46	6.57					


As presented in **Figure 6**, the ground water contours shows the direction of ground water flow at **South 87° West** with a gradient of approximately **0.0008 feet per foot** (ft/ft).

5.2 Ground Water Sampling

On July 12, 2005, ground water samples were collected from each of the monitoring wells. Prior to collection of ground water samples, ground water from each of the monitoring wells was analyzed for dissolved oxygen (DO). Then, the wells were purged of at least three well volumes or until dry. The temperature, pH, conductivity, and oxidation-reduction potential (ORP) of the purge water were measured and recorded. Following collection of the ground water sample, ground water was again field analyzed for DO. These measurements and other field data are shown on the purge sheets in **Appendix B**.

5.3 Ground Water Analytical Data

Ground water samples were analyzed by EPA Method 8260B for total petroleum hydrocarbons as gasoline (TPHg); benzene, toluene, ethylbenzene, and xylenes (BTEX); methyl tert butyl ether (MTBE); and volatile organic compounds (VOCs) and by EPA Method 8015(M) for total petroleum hydrocarbons as diesel (TPHd). The samples were collected and transported under strict chain of custody and in accordance with EPA's SW 846 guidelines. The samples were preserved on ice and transported to Kiff Analytical for analysis. Analytical results are tabulated in **Tables 5-2** and **5-3**, and positive analytical results are presented in **Figure 7**. Copies of the certified analytical laboratory results are included in **Appendix C**.

1200 I STREET

SACRAMENTO, SACRAMENTO COUNTY, CALIFORNIA

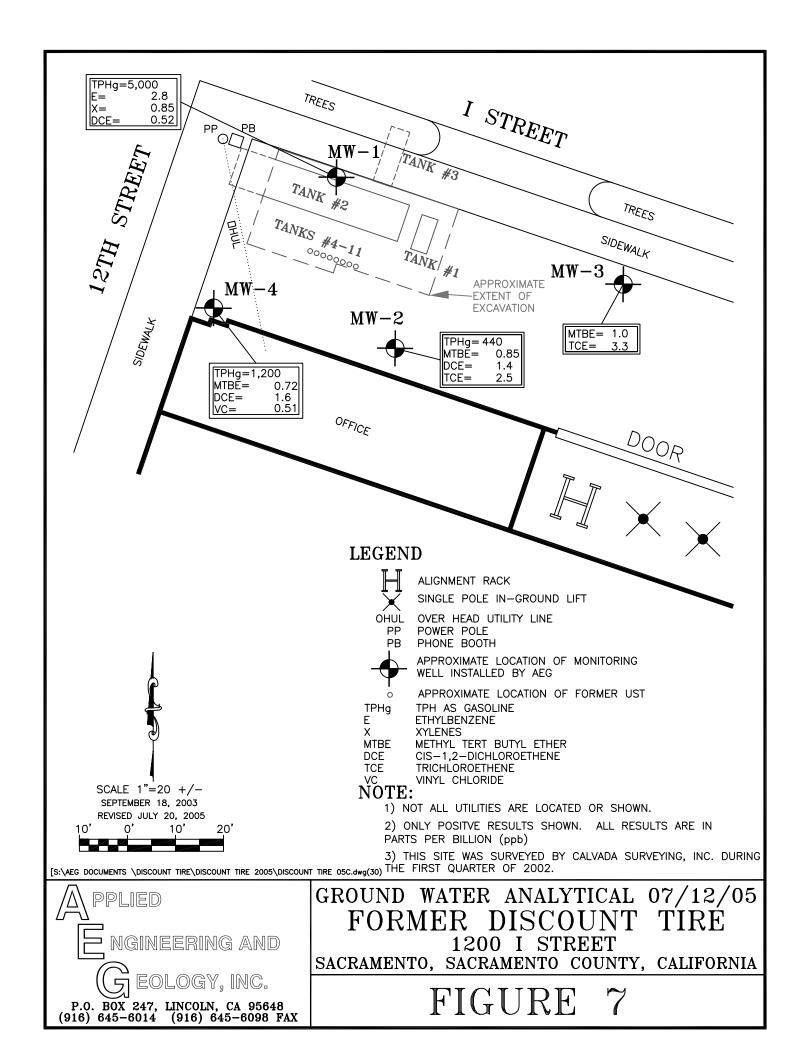
FIGURE 6

TABLE 5-2

Analytical Results of Ground Water Samples Collected July 12, 2005 Analyzed by EPA Method 8260B for TPHg, BTEX, and MTBE; and by EPA Method 8015(M) for TPHd All Results in Parts Per Billion (ppb)

Sample ID	ТРНд	TPHd	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
MW-1	5,000	<1,500	<0.50	<0.50	2.8	0.85	<0.50
MW-2	440	<300	<0.50	<0.50	<0.50	<0.50	0.85
MW-3	<50	<50	<0.50	<0.50	<0.50	<0.50	1.0
MW-4	1,200	<300	<0.50	<0.50	<0.50	<0.50	0.72

TPHg = Total petroleum hydrocarbons as gasoline


TPHd = Total petroleum hydrocarbons as diesel

MTBE = Methyl tert butyl ether

Laboratory note: "The Method Reporting Limit for TPH as Diesel is increased due to interference from Gasoline-Range Hydrocarbons for samples MW-1, MW-2, and MW-4."

TABLE 5-3 Positive Analytical Results of Ground Water Samples Collected July 12, 2005 Analyzed by EPA Method 8260B for Volatile Organic Compounds All Results in Parts Per Billion (ppb)

Sample ID	cis-1,2- Dichloroethene	Trichloroethene	Vinyl Chloride	
MW-1	0.52	<2.0	<0.50	
MW-2	1.4	2.5	<0.50	
MW-3	<0.50	3.3	<0.50	
MW-4	1.6	<1.0	0.51	

2nd & 3rd Q 2005, QMR, Status of Closure & WP to Abandon Wells

5.4 **Discussion of Ground Water Analytical Results**

Laboratory analytical results from the July 12, 2005 sampling event indicate that ground water beneath the Site contains concentrations of petroleum hydrocarbons and VOCs.

A review of the laboratory analytical data indicates the following:

- TPHg-Three of the four ground water samples analyzed contained concentrations of total petroleum hydrocarbons as gasoline (TPHg) above the method reporting limit (MRL). The highest concentration was reported in MW-1, at 5,000 parts per billion (ppb).
- TPHd-None of the ground water samples analyzed contained concentrations of total petroleum hydrocarbons as diesel (TPHd) above their MRLs. It should be noted that MW-1, MW-2, and MW-4 had higher MRLs due to interference from gasolinerange hydrocarbons.
- BTEX-MW-1 was the only sample analyzed to contain any of the benzene, toluene, ethylbenzene, and xylenes (BTEX) constituents above their MRLs. MW-1 was reported to contain ethylbenzene at a concentration of 2.8 ppb and xylenes at 0.85 ppb.
- MTBE-Three of the four ground water samples analyzed contained concentrations of methyl tert butyl ether (MTBE) above the MRL. The highest concentration was reported in sample MW-3, at 1.0 ppb.
- VOCs-Historically, samples collected at the Site have been analyzed for 29 volatile organic compounds (VOCs). Of these, only three have been reported above their MRLs (cis-1,2- dichloroethene, trichloroethene, and vinyl chloride).
 - Cis-1,2- Dichloroethene-Three of the four ground water samples analyzed contained concentrations of cis-1,2- dichloroethene above the MRL. The highest concentration was reported in MW-4, at 1.6 ppb.

Two of the four ground water samples analyzed Trichloroethenecontained concentrations of trichloroethene above the MRL. The highest concentration was reported in *MW-3*, at 3.3 ppb.

September 2, 2005

Vinyl Chloride-

One of the four ground water samples analyzed contained concentrations of vinyl chloride above the MRL. MW-4 was reported to contain a concentration of 0.51 ppb.

5.5 **AB2886 Submittal Report**

The Electronic Deliverable Format 1.2i (EDF) Data associated with the Third Quarter 2005 sampling event have been submitted. The EDF of this Report in PDF format will be uploaded when approved by the Client. Cumulative EDF uploads for Former Discount Tire are presented in the EDF Submittal Report, located in Appendix D.

5.6 **Purge Water**

Approximately 20 gallons of purge water were generated during the Third Quarter 2005 sampling event. Purge water is currently stored onsite in 55 gallon drums.

6.0 STATUS OF REQUEST FOR NFAR STATUS

In the Second Quarter 2005, after receiving direction from the County to evaluate remedial options in a March 28, 2005 letter (Appendix E), AEG began to prepare a Site evaluation to determine the feasibility of enhancing the Site's natural attenuation. Additionally, AEG requested additional analytical testing, including biological indicator and plate count testing, be performed in an Email dated April 14, 2005. The County approved the additional testing in a return Email dated April 14, 2005 (Appendix E).

After performing the additional biological indicator and plate count testing as part of the Second Quarter 2005 monitoring event, AEG submitted the Second Quarter 2005 analytical data to the County for Closure Review in an Email dated July 12, 2005 (Appendix E). After reviewing the data, the County (with agreement from the Regional Board) granted the Site No Further Action Required (NFAR) Status in a letter dated August 1, 2005 (Appendix E).

7.0 WORKPLAN TO ABANDON MONITORING WELLS

In a letter dated August 1, 2005, the Discount Tire Site received No Further Action Required (NFAR) status (see **Appendix E**) from the County of Sacramento. AEG is therefore submitting this Workplan to Abandon Wells (Workplan #4) to describe the procedure for the abandonment of the four existing monitoring wells. AEG will schedule the abandonment of all wells following the approval of Workplan #4.

7.1 Well Abandonment Procedures

During the abandonment of MW-1, MW-2, MW-3, and MW-4, the traffic rated well box and surface completion will be removed. Then an "A" rod will then be inserted into the well casings. Next, the boreholes will be overreamed using 10-inch diameter augers over the top of the "A" rod. Leading the augers with the "A" rod will minimize the probability of the augers meandering off the original borehole, ensure that the filter pack is removed, and minimize the abandoned borehole acting as a conduit for vertical migration.

Once the boreholes are at total depth (approximately 25 feet), they will be filled with a bentonite-cement grout through a tremmie to a depth of approximately 12 inches bgs. The grout will consist of 7½ gallons of water and three pounds of bentonite powder to each 94 pound sack of Type I-II Portland cement.

Concrete will then be placed above the bentonite-cement grout from an approximate depth of 12 inches bgs to the surface.

All ground water and soil cuttings stored at the Site will be properly disposed of following the monitoring well abandonment.

8.0 NEXT PHASE OF INVESTIGATION

The Site has received "No Further Action Required" status. Therefore, AEG will not continue quarterly monitoring at the Site. After receiving approval for the abandonment of the monitoring wells, AEG will schedule abandonment activities.

9.0 STATEMENT OF LIABILITY

This Second and Third Quarters 2005, Quarterly Monitoring Report, Status of Closure, and Workplan to Abandon Wells (Report/Workplan) was prepared by Applied Engineering and Geology, Inc. (AEG), at the request of Mrs. Dorothy Noyes, et al, (Property Owner), using the degree of care and skill ordinarily exercised, under similar circumstances, by reputable engineers, geologists, and scientists practicing in this or similar localities in California at the time this Report was prepared.

No other warranty, expressed or implied, is made as to the information and professional advice included in this Report/Workplan. This Report/Workplan was written to document remedial activities conducted at the Site and to comply with Title 23, Section 2652 (d) of the *California Code of Regulations*. Any reliance on this Report/Workplan by third parties shall be at such parties' sole risk.

AEG's Report/Workplan is based on factual information obtained from Dorothy Noyes, and others, that has been assumed to be correct, accurate and complete. Applied Engineering and Geology, Inc., does not guarantee the correctness, accuracy, or completeness of those data.

AEG's Report/Workplan of the presence and possible extent of selected hydrocarbons in soil and water at the Site is based on a limited number of observation points. Further investigation can reduce the inherent uncertainties associated with these types of limited environmental investigations.

This Report/Workplan or any part thereof may not be reproduced in any form without written permission from Applied Engineering and Geology, Inc., its Principals, or agents.

All work performed by AEG will be performed under the direct supervision of the engineer, registered with the State of California, whose signature appears at the end of this document.

Should you have any questions regarding the content of this Report, please contact the undersigned at 916.645.6014.

Sincerely,

APPLIED ENGINEERING AND GEOLOGY, INC.

Ernie Schofield Project Manager

Earl Stephens, RCE 45335

Principal Engineer

Additional copies were submitted to Dorothy Noyes for distribution to:

Laura Marshall-McLean, Sacramento County, Environmental Management Department

Kathy Amaru, Regional Water Quality Control Board

State Water Resources Control Board, UST Cleanup Fund

Carol Scheiber, Property Owner

Betty Van Meter, Property Owner

Alice Noyes, Property Owner

APPENDIX A

Cumulative Analytical

A.0 CUMULATIVE WATER LEVELS AND ANALYTICAL RESULTS

A.1 Cumulative Ground Water Elevation Data

TABLE A-1 Ground Water Elevation Data for October 15, 2001 through Present								
Date	MW-1	MW-2	MW-3	MW-4	Direction of Flow	Gradient (ft/ft)		
10/15/01	2.51	2.52	2.54	2.49	S 51° W	0.0005		
01/20/02	5.52	5.52	5.54	5.50	S 30° W	0.0013		
05/16/02	4.54	4.51	4.57	4.45	S 4º W/S 14º W	0.001/0.002		
07/13/02	3.68	3.67	3.72	3.64	S 19° W	0.0011		
10/25/02	3.17	3.24	3.30	3.30	inconclusive	inconclusive		
02/01/03	6.62	6.61	6.65	6.62	inconclusive	inconclusive		
04/23/03	6.85	6.86	6.90	6.82	S 85° W	0.0009		
07/25/03	5.13	5.16	5.17	5.12	N 50° W	0.0008		
11/26/03	3.88	3.88	3.91	3.87	S 71° W	0.0004		
01/14/04	5.77	5.78	5.81	5.76	N 86° W	0.0006		
04/07/04	7.81	7.80	7.84	7.78	S 53° W	0.0009		
08/13/04	4.98	5.04	4.99	4.93	inconclusive	inconclusive		
10/13/04	4.42	4.43	4.45	4.39	S 86° W/N 75° W	0.0011/0.0005		
01/11/05	6.63	6.64	6.66	6.62	N 76° W	0.0005		
04/26/05	7.68	7.67	7.72	7.66	S 58° W	0.0008		
07/12/05	6.60	6.61	6.63	6.57	S 87° W	0.0008		

A.2 Cumulative Soil Analytical Results

TABLE A-2

Analytical Results of Soil Samples Collected November 17, 2000 Analyzed by EPA Methods 8015(M), 8010B, and 8020A All Results in Parts Per Million (ppm)

Sample	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Xylenes
DP-4-12	<10	<10				
DP-5-12	<10	<10				
DP-6-8	<10	<10				
TW-1-24	<10	<10				
TW-2-20	<10	<10				
TW-3-20	310	250				

--- = Not analyzed for

TABLE A-3

Analytical Results of Soil Samples Collected During Monitoring Well Installation Analyzed by EPA Method 8260B and 8015(M) for TPHg, TPHd, and BTEX All Results in Parts Per Million (ppm)

Sample	Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Xylenes
MW-1@15'	09/28/01	630	1,300	<0.050	<0.050	<0.050	<0.050
MW-1@25'	09/28/01	260	160	<0.050	<0.050	<0.050	<0.050
MW-2@10'	07/19/01	<1.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050
MW-2@25'	07/19/01	470	310	<0.050	<0.050	<0.050	<0.10
MW-3@15'	07/18/01	<1.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050
MW-3@25'	07/18/01	<1.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050
MW-4@15'	09/28/01	<1.0	<1.0	<0.0050	<0.0050	<0.0050	<0.0050
MW-4@25'	09/28/01	1,200	420	<0.050	<0.050	<0.050	<0.050

TPHg = Total petroleum hydrocarbons as gasoline

TPHd = Total petroleum hydrocarbons as diesel

TABLE A-4 Analytical Results of Soil Samples Collected During Monitoring Well Installation Analyzed by EPA Method 8260B for MTBE and Lead Scavengers

All Results in Parts Per Million (ppm)

VI /								
Sample	Date	MTBE	1,2-DCA	EDB				
MW-1@15'	09/28/01	<0.10	<0.050	<0.050				
MW-1@25'	09/28/01	<0.050	<0.050	<0.050				
MW-2@10'	07/19/01	<0.0050	<0.0050	<0.0050				
MW-2@25'	07/19/01	<0.050	<0.050	<0.050				
MW-3@15'	07/18/01	<0.0050	<0.0050	<0.0050				
MW-3@25'	07/18/01	<0.0050	<0.0050	<0.0050				
MW-4@15'	09/28/01	<0.0050	<0.0050	<0.0050				
MW-4@25'	09/28/01	<0.050	<0.050	<0.050				

MTBE = Methyl tert butyl ether 1,2- DCA = 1,2- Dichloroethane

EDB = 1,2-Dibromoethane (aka. Ethylene dibromide)

TABLE A-5

Analytical Results of Spoil Pile Collected July 26, 2001 Analyzed by EPA Methods 8260B, 8015(M), and 6010 All Results are in Parts Per Million (ppm)

Analyte	Concentration
Total Petroleum Hydrocarbons as gasoline	<1.0
Total Petroleum Hydrocarbons as diesel	<1.0
Benzene	<0.0050
Toluene	<0.0050
Ethylbenzene	<0.0050
Xylenes	<0.0050
Volatile Organic Compounds	ND
Ketones	ND
Total Lead	20

ND = Not detected

TABLE A-6 Analysis Performed on Soil Samples Collected August 9, 2001									
Analysis	EPA Method	T-1N@10.5	T-1S@10.5	T8W@7.5	T8E@7.5				
TPHg (Table A-7)	8260B	XX	XX	XX	XX				
BTEX (Table A-7)	8260B	XX	XX	XX	XX				
Seven Oxygenates	8260B	XX	XX	XX	XX				
TPHd (Table A-7)	8015(M)	XX	XX	XX	XX				
Lead Scavengers	8260B	XX	XX	XX	XX				
TPHmo (Table A-7)	8015(M)	XX	XX						
HVOCs	8260B	XX	XX						
WET Lead	6010	XX	XX						
VOCs	8260B			XX	XX				
Polynuclear Aromatics (PNAs)	8015B			XX	XX				
Five LUFT Metals (Table A-8)	6010B			XX	XX				
Oil & Grease	1664			XX	XX				
Ethylene Glycol	8015B			XX	XX				
Polychlorinated biphenyls (PCBs)	3545 and 8082			XX	XX				

 \overline{XX} = Sample analyzed for

TABLE A-7

Analytical Results of Soil Samples Collected August 9, 2001 Analyzed by EPA Method 8260B for TPHg and BTEX; and by EPA Method and 8015(M) for TPHd and TPHmo All Results in Parts Per Million (ppm)

Sample	TPHg	TPHd	TPHmo	Benzene	Toluene	Ethylbenzene	Xylenes
T- 1N@10.5	<1.0	19	<10	<0.0050	<0.0050	<0.0050	<0.0050
T- 1S@10.5	<1.0	<1.0	<10	<0.0050	<0.0050	<0.0050	<0.0050
T8W@7.5	<1.0	<1.0		<0.0050	<0.0050	<0.0050	<0.0050
T8E@7.5	<1.0	<1.0		<0.0050	<0.0050	<0.0050	<0.0050

TPHg = Total petroleum hydrocarbons as gasoline

TPHd = Total petroleum hydrocarbons as diesel

TPHmo = Total petroleum hydrocarbons as motor oil

--- = Not analyzed for

TABLE A-8 Analytical Results of Soil Samples Collected August 9, 2001 Analyzed by EPA Method 6010B for the Five LUFT Metals All Results in Parts Per Million (ppm)								
Sample	Cadmium	Chromium	Lead	Nickel	Zinc			
T8W@7.5	<0.0500	<0.0500	1.3	60.36	23.71			
T8E@7.5	<0.0500	0.0564	<0.100	0.32	46.05			

Analytical Results of Soil Samples Collected January 14, 2004 Analyzed for TPHg, TPHd, TPHmo, BTEX, and MTBE All Results in Parts Per Million (ppm)

Sample ID	TPHg	TPHd ¹	TPHmo	Benzene	Toluene	Ethyl benzene	Xylenes	MTBE
GP-1@20'	<1.0	3.7	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
GP-2@20'	<1.0	2.6	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
GP-3@20'	<1.0	1.5	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
GP-4@20'	<1.0	3.1	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
GP-5@20'	<1.0	4.6	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
GP-6@20'	2.6	27	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
GP-7@20'	<1.0	2.1	<10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050

TPHg = Total petroleum hydrocarbons as gasoline

TPHd = Total petroleum hydrocarbons as diesel

TPHmo = Total petroleum hydrocarbons as motor oil

MTBE = Methyl tert butyl ether

¹ Hydrocarbons do not exhibit a typical TPH as Diesel chromatographic pattern for samples GP-1@20', GP-2@20', GP-3@20', GP-4@20', GP-5@20', and GP-7@20'

1,2-DCA = 1,2-Dichloroethene

A.3 Cumulative Ground Water Analytical Results

TABLE A-10

Analytical Results of Ground Water Samples Collected November 17, 2000 Analyzed by EPA Methods 8015(M), 8010B, and 8020A All Results in Parts Per Billion (ppb)

Sample	ТРНд	TPHd	Benzene	Toluene	Ethyl benzene	Xylenes	1,2-DCE	TCE	PCE
TW-1			1.2	ND	ND	ND	ND	ND	ND
TW-2			ND	ND	ND	12	3.5	6.4	0.82
TW-3			ND	310	80	720	ND	1.7	ND

TPHg = Total petroleum hydrocarbons as gasoline

TPHd = Total petroleum hydrocarbons as diesel TCE = Trichloroethene

PCE = Tetrachloroethene ND = Not detected

--- = Not analyzed for

TABLE A-11

Analytical Results of Water Sample Collected July 26, 2001 from the 500 Gallon Tank Analyzed by EPA Methods 8260B, 8015(M), and 6010 All Results are in Parts Per Billion (ppb)

Analyte	Concentration
Total Petroleum Hydrocarbons as gasoline	<50
Total Petroleum Hydrocarbons as diesel	<50
Total Petroleum Hydrocarbons as motor oil	<100
Benzene	<0.50
Toluene	<0.50
Ethylbenzene	<0.50
Xylenes	<0.50
Volatile Organic Compounds	ND
Ketones	ND

ND = Not detected

Analytical Results of Ground Water Samples Analyzed by EPA Method 8260B for TPHg, BTEX, and MTBE; and by EPA Method 8015(M) for TPHd All Results in Parts Per Billion (ppb)

All Results in Parts Per Billion (ppo)								
Well/Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	
MW-1								
10/15/01	13,000	<2,000 ¹	<1.0	<1.0	50	4.4	<1.0	
01/20/02	5,600	<2,000 ¹	<0.50	<0.50	58	4.4	<0.50	
05/16/02	4,800	<600 ¹	<0.50	<0.50	18	2.2	<0.50	
07/13/02	4,800	<1,200 ¹	<0.50	<0.50	26	3.2	<1.0	
10/25/02	5,300	<2,500 ¹	<1.0	<1.0	26	3.0	<1.0	
02/01/03	5,000	<1,500 ¹	<2.0	<2.0	12	2.5	<2.0	
04/23/03	6,800	<1,600 ¹	<1.5	<1.5	11	2.0	<1.5	
07/25/03	5,300	<1,500 ¹	<0.50	<0.50	7.0	1.7	<0.50	
11/26/03	4,500	<1,500 ¹	<1.5	<1.5	4.0	<1.5	<1.5	
01/14/04	5,900	<2,000 ¹	<1.0	<1.0	5.3	1.9	<1.0	
04/07/04	6,600	<1,500 ¹	<2.5	<2.5	4.0	<2.5	<2.5	
08/13/04	6,500	<1,500 ¹	<1.5	<1.5	3.3	<1.5	<1.5	
10/13/04	5,500	<1,500 ¹	<1.0	<1.0	2.8	1.6	<1.0	
01/11/05	5,200	<1,500 ¹	<1.0	<1.0	2.7	1.0	<1.0	
04/26/05	4,000	<1,500 ¹	<0.50	<0.50	2.3	0.86	<0.50	
07/12/05	5,000	<1,500 ¹	<0.50	<0.50	2.8	0.85	<0.50	
MW-2								
07/19/01	1,400	<1,0001	<0.50	<0.50	<0.50	<0.50	<0.50	
10/15/01	2,100		<0.50	<0.50	<0.50	<0.50	<0.50	
01/20/02	1,000	<300 ¹	<0.50	<0.50	<0.50	<0.50	<0.50	
05/16/02	930	<200 ¹	<0.50	<0.50	<0.50	<0.50	<0.50	
07/13/02	930	<200 ¹	<0.50	<0.50	<0.50	<0.50	0.62	
10/25/02	810	<400 ¹	<0.50	<0.50	<0.50	<0.50	0.52	
02/01/03	630	<300 ¹	<0.50	<0.50	<0.50	<0.50	0.63	
04/23/03	690	<250 ¹	<0.50	<0.50	<0.50	<0.50	0.61	
07/25/03	450	<400 ¹	<0.50	<0.50	<0.50	<0.50	<0.80²	
11/26/03	570	<300 ¹	<0.50	<0.50	<0.50	<0.50	<0.80 ²	
01/14/04	620	<300 ¹	<0.50	<0.50	<0.50	<0.50	0.96	

Analytical Results of Ground Water Samples Analyzed by EPA Method 8260B for TPHg, BTEX, and MTBE; and by EPA Method 8015(M) for TPHd All Results in Parts Per Billion (ppb)

Well/Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
04/07/04	480	<200 ¹	<0.50	<0.50	<0.50	<0.50	0.82
08/13/04	460	<200 ¹	<0.50	<0.50	<0.50	<0.50	0.93
10/13/04	460	<200 ¹	<0.50	<0.50	<0.50	<0.50	1.0
01/11/05	400	<200 ¹	<0.50	<0.50	<0.50	<0.50	0.97
04/26/05	360	<200 ¹	<0.50	<0.50	<0.50	<0.50	0.75
07/12/05	440	<300 ¹	<0.50	<0.50	<0.50	<0.50	0.85
MW-3	•						•
07/19/01	<50	<50	<0.50	<0.50	<0.50	<0.50	0.85
10/15/01	<50		<0.50	<0.50	<0.50	<0.50	0.98
01/20/02	<50	<50	<0.50	<0.50	<0.50	<0.50	1.0
05/16/02	<50	<50	<0.50	<0.50	<0.50	<0.50	1.1
07/13/02	<50	<50	<0.50	<0.50	<0.50	<0.50	1.3
10/25/02	<50	<50	<0.50	<0.50	<0.50	<0.50	1.2
02/01/03	<50	<50	<0.50	<0.50	<0.50	<0.50	1.4
04/23/03	<50	83	<0.50	<0.50	<0.50	<0.50	1.4
07/25/03	<50	<50	<0.50	<0.50	<0.50	<0.50	1.4
11/26/03	<50	<50	<0.50	<0.50	<0.50	<0.50	1.3
01/14/04	<50	72	<0.50	<0.50	<0.50	<0.50	1.9
04/07/04	<50	73	<0.50	<0.50	<0.50	<0.50	1.5
08/13/04	<50	<50	<0.50	<0.50	<0.50	<0.50	1.1
10/13/04	<50	<50	<0.50	<0.50	<0.50	<0.50	1.0
01/11/05	<50	<50	<0.50	<0.50	<0.50	<0.50	0.96
04/26/05	<50	<50	<0.50	<0.50	<0.50	<0.50	0.93
07/12/05	<50	<50	<0.50	<0.50	<0.50	<0.50	1.0
MW-4							
10/15/01	4,300	<800 ¹	<0.50	<0.50	<0.50	<0.50	<0.50
01/20/02	2,000	<500 ¹	<0.50	<0.50	<0.50	<0.50	<0.50
05/16/02	1,900	<200 ¹	<0.50	<0.50	<0.50	<0.50	<0.50
07/13/02	2,200	<400 ¹	<0.50	<0.50	<0.50	<0.50	<0.50

Analytical Results of Ground Water Samples
Analyzed by EPA Method 8260B for TPHg, BTEX, and MTBE;
and by EPA Method 8015(M) for TPHd
All Results in Parts Per Billion (ppb)

Well/Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
10/25/02	1,900	<600 ¹	<0.50	<0.50	<0.50	<0.50	0.74
02/01/03	1,800	<400 ¹	<0.50	<0.50	<0.50	<0.50	<1.0 ²
04/23/03	1,700	<400 ¹	<0.50	<0.50	<0.50	<0.50	<0.50
07/25/03	1,400	<300 ¹	<0.50	<0.50	<0.50	<0.50	<0.50
11/26/03	1,600	<300 ¹	<0.50	<0.50	<0.50	<0.50	0.76
01/14/04 ³	1,600	<300 ¹	<0.50	<0.50	<0.50	<0.50	0.69
04/07/04	1,400	<300 ¹	<0.50	<0.50	<0.50	<0.50	<0.50
08/13/04	1,300	<200 ¹	<0.50	<0.50	<0.50	<0.50	0.81
10/13/04	1,200	<200 ¹	<0.50	<0.50	<0.50	<0.50	1.0
01/11/05	1,700	<200 ¹	<0.50	<0.50	<0.50	<0.50	0.86
04/26/05	1,100	<300 ¹	<0.50	<0.50	<0.50	<0.50	0.64
07/12/05	1,200	<300 ¹	<0.50	<0.50	<0.50	<0.50	0.72

TPHg = Total petroleum hydrocarbons as gasoline

MTBE = Methyl tert butyl ether

TABLE A-13 Analytical Results of Ground Water Samples Analyzed by EPA Method 8260B for the Five Oxygenates and Lead Scavengers All Results in Parts Per Billion (ppb) Well/Date **MTBE DIPE ETBE** 1,2-DCA **TAME TBA EDB** MW-1 10/15/01 <1.0 <1.0 <1.0 <1.0 <10 <1.0 <1.0 MW-2 07/19/01 < 0.50 < 0.50 < 0.50 < 0.50 < 5.0 < 0.50 < 0.50

TPHd = Total petroleum hydrocarbons as diesel

¹ Laboratory note: "The Method Reporting Limit for TPH as Diesel has been increased due to interference from Gasoline-Range Hydrocarbons"

² Laboratory note: The Method Reporting Limit for MTBE has been increased due to the presence of an interfering compound...."

³ Sample was also analyzed by EPA Method 8015(M) for TPHmo. Concentration of TPHmo was <100 ppb.

= Di-isopropyl ether

1,2-DCA = 1,2- Dichloroethane

= Tert amyl methyl ether

TABLE A-13

Analytical Results of Ground Water Samples
Analyzed by EPA Method 8260B for the Five Oxygenates and Lead Scavengers
All Results in Parts Per Billion (ppb)

	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1								
Well/Date	MTBE	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB		
MW-3									
07/19/01	0.85	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		
MW-4	MW-4								
10/15/01	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		

MTBE = Methyl tert butyl ether

ETBE = Ethyl tert butyl ether

TBA = Tert butanol EDB = 1,2-Dibromo

= 1,2-Dibromoethane (aka. Ethylene dibromide)

DIPE

TAME

TABLE A-14

Analytical Results of Ground Water Samples Collected January 14, 2004 Analyzed by EPA Method 8260B for TPHg, BTEX, and MTBE; and by EPA Method 8015(M) for TPHd and TPHmo All Results in Parts Per Billion (ppb)

Sample ID	TPHg	TPHd	TPHmo	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
GP-1	<50	92	<100	<0.50	<0.50	<0.50	<0.50	<0.50
GP-2	200	380	180	<0.50	<0.50	<0.50	<0.50	<0.50
GP-3	<50	240	530 ²	<0.50	<0.50	<0.50	<0.50	<0.50
GP-4	<50	<50	<100	<0.50	<0.50	<0.50	<0.50	<0.50
GP-5	<50	130¹	130	<0.50	<0.50	<0.50	<0.50	1.1
GP-6	180	660	170	<0.50	<0.50	<0.50	<0.50	<0.50
GP-7	<50	270¹	1,400	<0.50	<0.50	<0.50	<0.50	<0.50

TPHg = Total petroluem hydrocarbons as gasoline

TPHd = Total petroleum hydrocarbons as diesel

TPHmo = Total petroleum hydrocarbons as motor oil

MTBE = Methyl tert butyl ether

¹ Laboratory note: The Method Reporting Limit for MTBE has been increased due to the presence of an interfering compound...."

¹ Hydrocarbons reported as TPH as Diesel do not exhibit a typical Diesel chromatographic pattern for samples GP-5 and GP-7

² Hydrocarbons reported as TPH as Motor Oil do not exhibit a typical Motor Oil chromatographic pattern for sample GP-3

TABLE A-15 Positive Analytical Results of Ground Water Samples Analyzed by EPA Method 8260B for Volatile Organic Compounds All Results in Parts Per Billion (ppb)

Well/Date	cis-1,2- Dichloroethene	Trichloroethene	Vinyl Chloride
MW-1			
10/15/01	<1.0	<1.0	1.2
01/20/02	1.1	<2.01	1.2
05/16/02	1.6	<1.01	1.0
07/13/02	1.6	<2.01	<1.0
10/25/02	1.3	<1.0	<1.0
02/01/03	<2.0	<2.0	<2.0
04/23/03	<1.5	<1.5	<1.5
07/25/03	0.82	<2.01	<0.50
11/26/03	<1.5	<5.0 ¹	<1.5
01/14/04	<1.0	<1.0	<1.0
04/07/04	<2.5	<2.5	<2.5
08/13/04	<1.5	<1.5	<1.5
10/13/04	<1.0	<1.0	<1.0
01/11/05	<1.0	<1.0	<1.0
04/26/05	<0.50	<0.50	<0.50
07/12/05	0.52	<2.0	<0.50
MW-2			
07/19/01	2.7	2.2	<0.50
10/15/01	4.1	3.5	<0.50
01/20/02	3.0	3.3	<0.50
05/16/02	2.4	3.1	<0.50
07/13/02	2.9	3.5	<0.50
10/25/02	2.6	4.4	<0.50
02/01/03	2.0	4.3	<0.50
04/23/03	2.0	3.6	<0.50
07/25/03	2.0	2.4	<0.50
11/26/03	2.2	3.0	<0.50
01/14/04	2.0	3.5	<0.50
04/07/04	1.6	3.2	<0.50

TABLE A-15 Positive Analytical Results of Ground Water Samples Analyzed by EPA Method 8260B for Volatile Organic Compounds All Results in Parts Per Billion (ppb)

Well/Date	cis-1,2- Dichloroethene	Trichloroethene	Vinyl Chloride
08/13/04	1.5	1.9	<0.50
10/13/04	1.6	2.2	<0.50
01/11/05	1.5	2.1	<0.50
04/26/05	1.0	1.7	<0.50
07/12/05	1.4	2.5	<0.50
MW-3			
07/19/01	<0.50	3.5	<0.50
10/15/01	0.52	4.0	<0.50
01/20/02	0.59	4.5	<0.50
05/16/02	0.64	5.3	<0.50
07/13/02	0.82	6.1	<0.50
10/25/02	0.76	6.6	<0.50
02/01/03	0.64	5.9	<0.50
04/23/03	0.53	5.6	<0.50
07/25/03	0.61	5.2	<0.50
11/26/03	0.67	5.1	<0.50
01/14/04	0.73	5.0	<0.50
04/07/04	0.63	4.9	<0.50
08/13/04	<0.50	3.1	<0.50
10/13/04	<0.50	3.2	<0.50
01/11/05	<0.50	2.9	<0.50
04/26/05	<0.50	2.8	<0.50
07/12/05	<0.50	3.3	<0.50
MW-4	<u> </u>		
10/15/01	1.5	<0.50	0.59
01/20/02	0.87	<2.01	0.72
05/16/02	1.2	<2.01	0.60
07/13/02	2.2	<2.01	<1.01
10/25/02	2.9	<3.0 ¹	<0.50
02/01/03	1.7	<2.0 ¹	<0.50

TABLE A-15 Positive Analytical Results of Ground Water Samples Analyzed by EPA Method 8260B for Volatile Organic Compounds All Results in Parts Per Billion (ppb)

7 th Results in Faits Fet Binton (ppo)							
Well/Date	cis-1,2- Dichloroethene	Trichloroethene	Vinyl Chloride				
04/23/03	1.3	<2.01	0.65				
07/25/03	2.6	0.95	0.62				
11/26/03	2.6	<2.01	<0.50				
01/14/04	1.4	<2.01	0.62				
04/07/04	1.5	<0.50	0.59				
08/13/04	1.9	<0.50	<0.50				
10/13/04	2.1	0.64	<0.50				
01/11/05	1.2	0.67	<0.50				
04/26/05	0.80	<0.50	<0.50				
07/12/05	1.6	<1.0	0.51				

¹ Laboratory Case Narrative reported the Method Reporting Limit had been increased due to a presence of an interfering compound.

TABLE A-16 Positive Analytical Results¹ of Ground Water Samples Collected January 14, 2004 Analyzed for Volatile Halocarbons All Results in Parts Per Billion (ppb)

Sample ID	cis-1,2- Dichloroethene	Trichloroethene	Vinyl Chloride	Tetrachloroethene
GP-1	1.0	3.8	<0.50	<0.50
GP-2	0.81	<0.50	<0.50	<0.50
GP-3	<0.50	<0.50	<0.50	<0.50
GP-4	<0.50	<0.50	<0.50	<0.50
GP-5	0.94	7.2	<0.50	5.2
GP-6	2.7	0.91	<0.50	<0.50
GP-7	<0.50	5.1	<0.50	<0.50

Analytical Results for Water Samples Collected on April 26, 2005 Analyzed by Methods Indicated for Geochemical and Biological Indicators All Results in Parts Per Million (ppm)

						11 /		
Sample	DO Before Purge	DO After Purge	Nitrate EPA 300.0	Nitrite EPA 300.0	Sulfate EPA 300.0	TDI EPA 200.7	Ferrous Iron (Fe ⁺²) SM 3500	Alkalinity as CaCO ₃ SM 2320B
MW-1	1.90	0.49	<0.10	<0.10	3.4	4.30	4.3	530
MW-2	2.19	1.15	1.5	<0.10	57	<0.100	<0.10	400
MW-3	2.14	0.98	4.1	<0.10	57	<0.100	<0.10	360
MW-4	2.23	0.44	<0.10	<0.10	16	0.837	2.0	460

DO = Dissolved Oxygen: readings are in milligram per liter (mg/L)

TDI = Total Dissolved Iron

TABLE A-18

Analytical Results for Water Samples Collected on April 26, 2005 Analyzed by Methods Indicated for Organic Nutrient Indicators All Results in Parts Per Million (ppm)

Sample ID	Ammonia as Nitrogen EPA 350.2	Ortho-Phosphate EPA 300.0	Total Kjeldahl Nitrogen EPA 351.3	Potassium EPA 200.7
MW-1	<0.10	<0.10	0.56	2.49
MW-2	<0.10	<0.10	<0.50	3.84
MW-3	<0.10	0.11	<0.50	3.87
MW-4	<0.10	<0.10	<0.50	2.14

September 2, 2005

TABLE A-19

Analytical Results of Water Samples Collected April 26, 2005 Analyzed for Total Heterotrophic Bacteria All Results in Colony Forming Units per Milliliter (cfu/ml)

		U 1	,
Sample ID	Sample ID Sample Date		Total Heterotrophs (cfu/ml)
MW-1	04/26/05	Gasoline/Diesel	4 × 10 ³
MW-2	04/26/05	Gasoline/Diesel	2 x 10 ³
MW-3	04/26/05	Gasoline/Diesel	3×10^{3}
MW-4	04/26/05	Gasoline/Diesel	3 x 10 ³
Sterile Water	04/27/05	Gasoline/Diesel	0
Air Control	04/27/05	Gasoline/Diesel	0
Positive Control	04/27/05	Gasoline/Diesel	8 x 10 ⁹

cfu/ml = colony forming units per milliliter

Laboratory footnote: Reporting Limit for enumeration data is 1.0 x 10 ¹ cfu/ml

APPENDIX B

Monitoring Well Purge Data Sheets

APPLIED ENGINEERING AND GEOLOGY, INC. MONITORING WELL PURGE DATA SHEET

Project Name: Discount Tire Date: 04/26/05

Project Location: 1200 I Street

Sacramento, California

Performed By: Mike Bambino

Well Number: MW-1 Well Location: Northwest corner of lot

Depth to Water: 14.15 @ 0916 Depth of Well: 24.87 ft

Product Thickness: 0.00 in Water Thickness: 10.72 ft

Well Diameter: 2 in Casing Elevation: 21.83 ft

Screen Length 15 feet Ground Water Elevation: 7.68 ft

Calculated Volume of Water to be Purged: 5.36 gallons

Purging Information: Purge Time: Start: 1050 Date Purged: 04/26/05

End: 1105

Actual Volume Purged: 5.5 gallons

Dissolved Oxygen Before Purge: 1.90 mg/L After Sampling: 0.49 mg/L

Depth To Water After Purge: 14.31 ft

Notable Sheen: None

Time	Volume (gallons)	pН	Temp (deg. C)	Conductivity (µS)	ORP (mV)
1053	1.0	6.90	20.9	1064	-151
1056	2.0	6.82	20.9	1058	-103
1101	4.0	6.83	20.8	1061	-101
1105	5.5	6.84	20.8	1060	-104

Date Sampled: 04/26/05

Time Sampled: 1302

Sampler Type: Disposable Polyethylene Bailer

Sample Containers: 5 - 40 ml VOAs

Tests Requested: TPHg, TPHd, BTEX, MTBE, Volatile Halocarbons

Preservatives: HCl, Ice

Analytical Lab: KIFF ANALYTICAL

Comments: Green in color, strong unidentifiable odor

MONITORING WELL PURGE DATA SHEET

Project Name: Discount Tire Date: 04/26/05

Project Location: 1200 I Street

Sacramento, California

Performed By: Mike Bambino

Well Number: MW-2 Well Location: In front of sales room

Depth to Water: 14.68 @ 0910 Depth of Well: 25.21 ft

Product Thickness: 0.00 in Water Thickness: 10.53 ft

Well Diameter: 2 in Casing Elevation: 22.35 ft

Screen Length 15 feet Ground Water Elevation: 7.67 ft

Calculated Volume of Water to be Purged: 5.26 gallons

Purging Information: Purge Time: Start: 1006 Date Purged: 04/26/05

End: 1019

Actual Volume Purged: 5.5 gallons

Dissolved Oxygen Before Purge: 2.19 mg/L After Sampling: 1.15 mg/L

Depth To Water After Purge: 14.94 ft

Notable Sheen: None

Time	Volume (gallons)	рН	Temp (deg. C)	Conductivity (µS)	ORP (mV)
1008	1.0	6.96	20.3	944.5	131
1011	2.0	6.78	20.1	946.4	112
1015	4.0	6.78	20.1	938.9	36
1019	5.5	6.77	20.1	937.9	13

Date Sampled: 04/26/05

Time Sampled: 1205

Sampler Type: Disposable Polyethylene Bailer

Sample Containers: 5 - 40 ml VOAs

Tests Requested: TPHg, TPHd, BTEX, MTBE, Volatile Halocarbons

Preservatives: HCl, Ice

Analytical Lab: KIFF ANALYTICAL

Comments: Green in color, strong unidentifiable odor

MONITORING WELL PURGE DATA SHEET

Project Name: Discount Tire Date: 04/26/05

Project Location: 1200 I Street

Sacramento, California

Performed By: Mike Bambino

Well Number: MW-3 Well Location: North side of lot

Depth to Water: 14.38 @ 0923 Depth of Well: 25.19 ft

Product Thickness: 0.00 in Water Thickness: 10.81 ft

Well Diameter: 2 in Casing Elevation: 22.10 ft

Screen Length 15 feet Ground Water Elevation: 7.72 ft

Calculated Volume of Water to be Purged: 5.40 gallons

Purging Information: Purge Time: Start: 0944 Date Purged: 04/26/05

End: 0958

Actual Volume Purged: 5.5 gallons

Dissolved Oxygen Before Purge: 2.14 mg/L After Sampling: 0.98 mg/L

Depth To Water After Purge: 14.54 ft

Notable Sheen: None

Time	Volume (gallons)	рН	Temp (deg. C)	Conductivity (µS)	ORP (mV)
0947	1.0	6.47	20.4	1014	176
0949	2.0	6.61	20.4	942.3	146
0954	4.0	6.62	20.4	924.2	145
0958	5.5	6.63	20.5	916.2	150

Date Sampled: 04/26/05

Time Sampled: 1135

Sampler Type: Disposable Polyethylene Bailer

Sample Containers: 5 - 40 ml VOAs

Tests Requested: TPHg, TPHd, BTEX, MTBE, Volatile Halocarbons

Preservatives: HCl, Ice

Analytical Lab: KIFF ANALYTICAL

Comments: Brown in color

MONITORING WELL PURGE DATA SHEET

Project Name: Discount Tire Date: 04/26/05

Project Location: 1200 I Street

Sacramento, California

Performed By: Mike Bambino

Well Number: MW-4 Well Location: Southwest corner of parking lot

Depth to Water: 14.37 @ 0913 Depth of Well: 24.74 ft

Product Thickness: 0.00 in Water Thickness: 10.37 ft

Well Diameter: 2 in Casing Elevation: 22.03 ft

Screen Length 15 feet Ground Water Elevation: 7.66 ft

Calculated Volume of Water to be Purged: 5.18 gallons

Purging Information: Purge Time: Start: 1028 Date Purged: 04/26/05

End: 1042

Actual Volume Purged: 5.25 gallons

Dissolved Oxygen Before Purge: 2.23 mg/L After Sampling: 0.44 mg/L

Depth To Water After Purge: 14.56 ft

Notable Sheen: None

Time	Volume (gallons)	рН	Temp (deg. C)	Conductivity (µS)	ORP (mV)
1031	1.0	7.00	19.9	949.2	-44
1034	2.0	6.84	19.5	952.4	-54
1039	4.0	6.88	19.8	947.2	-66
1042	5.25	6.89	19.7	948.5	-71

Date Sampled: 04/26/05

Time Sampled: 1234

Sampler Type: Disposable Polyethylene Bailer

Sample Containers: 5 - 40 ml VOAs

Tests Requested: TPHg, TPHd, BTEX, MTBE, Volatile Halocarbons

Preservatives: HCl, Ice

Analytical Lab: KIFF ANALYTICAL

Comments: Black in color, strong unidentifiable odor

APPLIED ENGINEERING AND GEOLOGY, INC. MONITORING WELL PURGE DATA SHEET

Project Name: Discount Tire Date: 07/12/05

Project Location: 1200 I Street

Sacramento, California

Performed By: Mike Bambino

Well Number: MW-1 Well Location: Northwest corner of lot

Depth to Water: 15.23 @ 0940 Depth of Well: 24.87 ft

Product Thickness: 0.00 in Water Thickness: 9.64 ft

Well Diameter: 2 in Casing Elevation: 21.83 ft

Screen Length 15 feet Ground Water Elevation: 6.60 ft

Calculated Volume of Water to be Purged: 4.82 gallons

Purging Information: Purge Time: Start: 1113 Date Purged: 07/12/05

End: 1126

Actual Volume Purged: 5 gallons

Dissolved Oxygen Before Purge: 1.89 mg/L After Sampling: 0.61 mg/L

Depth To Water After Purge: 15.35 ft

Notable Sheen: None

Time	Volume (gallons)	pН	Temp (deg. C)	Conductivity (µS)	ORP (mV)
1115	1.0	7.03	26.0	989.5	-134
1118	2.0	6.92	23.8	1004	-101
1120	3.0	6.93	23.4	1002	-102
1126	5.0	6.95	23.6	999.4	-103

Date Sampled: 07/12/05

Time Sampled: 1229

Sampler Type: Disposable Polyethylene Bailer

Sample Containers: 5 - 40 ml VOAs

Tests Requested: TPHg, TPHd, BTEX, MTBE, Volatile Halocarbons

Preservatives: HCl, Ice

Analytical Lab: KIFF ANALYTICAL

Comments: Strong unidentifiable odor

MONITORING WELL PURGE DATA SHEET

Project Name: Discount Tire Date: 07/12/05

Project Location: 1200 I Street

Sacramento, California

Performed By: Mike Bambino

Well Number: MW-2 Well Location: In front of sales room

Depth to Water: 15.74 @ 0935 Depth of Well: 25.21 ft

Product Thickness: 0.00 in Water Thickness: 9.47 ft

Well Diameter: 2 in Casing Elevation: 22.35 ft

Screen Length 15 feet Ground Water Elevation: 6.61 ft

Calculated Volume of Water to be Purged: 4.73 gallons

Purging Information: Purge Time: Start: 1025 Date Purged: 07/12/05

End: 1037

Actual Volume Purged: 5 gallons

Dissolved Oxygen Before Purge: 2.25 mg/L After Sampling: 0.74 mg/L

Depth To Water After Purge: 15.96 ft

Notable Sheen: None

Time	Volume (gallons)	рН	Temp (deg. C)	Conductivity (µS)	ORP (mV)
1027	1.0	6.96	23.1	892.3	-24
1029	2.0	6.82	22.1	889.1	-27
1032	3.0	6.83	21.6	887.6	-31
1037	5.0	6.84	21.7	884.5	-38

Date Sampled: 07/12/05

Time Sampled: 1201

Sampler Type: Disposable Polyethylene Bailer

Sample Containers: 5 - 40 ml VOAs

Tests Requested: TPHg, TPHd, BTEX, MTBE, Volatile Halocarbons

Preservatives: HCl, Ice

Analytical Lab: KIFF ANALYTICAL

Comments: Brown in color, strong unidentifiable odor

MONITORING WELL PURGE DATA SHEET

Project Name: Discount Tire Date: 07/12/05

Project Location: 1200 I Street

Sacramento, California

Performed By: Mike Bambino

Well Number: MW-3 Well Location: North side of lot

Depth to Water: 15.47 @ 0933 Depth of Well: 25.19 ft

Product Thickness: 0.00 in Water Thickness: 9.72 ft

Well Diameter: 2 in Casing Elevation: 22.10 ft

Screen Length 15 feet Ground Water Elevation: 6.63 ft

Calculated Volume of Water to be Purged: 4.86 gallons

Purging Information: Purge Time: Start: 1002 Date Purged: 07/12/05

End: 1014

Actual Volume Purged: 5 gallons

Dissolved Oxygen Before Purge: 2.39 mg/L After Sampling: 0.81 mg/L

Depth To Water After Purge: 15.65 ft

Notable Sheen: None

Time	Volume (gallons)	pН	Temp (deg. C)	Conductivity (µS)	ORP (mV)
1004	1.0	6.57	22.8	867.4	140
1007	2.0	6.58	22.4	848.4	144
1010	3.0	6.61	22.0	850.5	146
1014	5.0	6.64	21.9	846.1	149

Date Sampled: 07/12/05

Time Sampled: 1147

Sampler Type: Disposable Polyethylene Bailer

Sample Containers: 5 - 40 ml VOAs

Tests Requested: TPHg, TPHd, BTEX, MTBE, Volatile Halocarbons

Preservatives: HCl, Ice

Analytical Lab: KIFF ANALYTICAL

Comments: None

MONITORING WELL PURGE DATA SHEET

Project Name: Discount Tire Date: 07/12/05

Project Location: 1200 I Street

Sacramento, California

Performed By: Mike Bambino

Well Number: MW-4 Well Location: Southwest corner of parking lot

Depth to Water: 15.46 @ 0937 Depth of Well: 24.74 ft

Product Thickness: 0.00 in Water Thickness: 9.28 ft

Well Diameter: 2 in Casing Elevation: 22.03 ft

Screen Length 15 feet Ground Water Elevation: 6.57 ft

Calculated Volume of Water to be Purged: 4.62 gallons

Purging Information: Purge Time: Start: 1047 Date Purged: 07/12/05

End: 1101

Actual Volume Purged: 5 gallons

Dissolved Oxygen Before Purge: 1.94 mg/L After Sampling: 0.69 mg/L

Depth To Water After Purge: 15.68 ft

Notable Sheen: None

Time	Volume (gallons)	рН	Temp (deg. C)	Conductivity (μS)	ORP (mV)
1050	1.0	7.26	24.2	845.7	-164
1053	2.0	6.98	22.3	851.7	-74
1056	3.0	7.01	21.4	863.9	-83
1101	5.0	7.00	22.0	861.8	-79

Date Sampled: 07/12/05

Time Sampled: 1214

Sampler Type: Disposable Polyethylene Bailer

Sample Containers: 5 - 40 ml VOAs

Tests Requested: TPHg, TPHd, BTEX, MTBE, Volatile Halocarbons

Preservatives: HCl, Ice

Analytical Lab: KIFF ANALYTICAL

Comments: Black in color, strong unidentifiable odor

APPENDIX C

Certified Laboratory Analytical Reports

Date: 5/3/2005

Stan Walker Applied Engineering & Geology, Inc. P. O. Box 247 Lincoln, CA 95648

Subject : 4 Water Samples Project Name : Discount Tire

Project Number:

Dear Mr. Walker,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed.

Kiff Analytical is certified by the State of California (# 2236). If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Date: 5/3/2005

Subject: Project Name : 4 Water Samples Discount Tire

Project Number :

Case Narrative

The Method Reporting Limit for TPH as Diesel is increased due to interference from Gasoline-Range Hydrocarbons for samples MW-1, MW-2 and MW-4.

Date: 5/3/2005

Project Name: Discount Tire

Project Number:

Sample: MW-1

Matrix: Water

Lab Number: 43429-01

Sample Date :4/26/2005

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
TPH as Diesel	< 1500	1500	ug/L	M EPA 8015	4/30/2005
Octacosane (Diesel Surrogate)	101		% Recovery	M EPA 8015	4/30/2005

Sample: MW-2

Matrix: Water

Lab Number: 43429-02

Sample Date :4/26/2005

Sample Date :4/26/2005	Measured	Method		Analysis	Date
Parameter	Value	Reporting Limit	Units	Method	Analyzed
TPH as Diesel	< 200	200	ug/L	M EPA 8015	4/30/2005
Octacosane (Diesel Surrogate)	104		% Recovery	M EPA 8015	4/30/2005

Sample: MW-3

Matrix : Water

Lab Number: 43429-03

Sample Date :4/26/2005	Magaywad	Method		Analysis	Date
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Analyzed
TPH as Diesel	< 50	50	ug/L	M EPA 8015	4/30/2005
Octacosane (Diesel Surrogate)	105		% Recovery	M EPA 8015	4/30/2005

Approved By:

Date: 5/3/2005

Project Name : Discount Tire

Project Number:

Sample: MW-4

Matrix: Water

Lab Number : 43429-04

Sample Date :4/26/2005

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
TPH as Diesel	< 300	300	ug/L	M EPA 8015	4/30/2005
Octacosane (Diesel Surrogate)	103		% Recovery	M EPA 8015	4/30/2005

Approved By:

del Kiff

Date: 5/3/2005

Sample: MW-1

Project Name: Discount Tire

Project Number:

Lab Number: 43429-01

Date Analyzed : 4/28/2005, 4/27/2005

Matrix: Water

Sample Date :4/26/2005

Analysis Method: EPA 8260B

Parameter	Measure Value	ed 1 MRL	Units	Parameter	Measured 1 Value MRL	Units
Benzene	< 0.50	0.50	ug/L	Toluene - d8 (Surr)	93.5	% Recovery
Toluene	< 0.50	0.50	ug/L	4-Bromofluorobenzene (Surr)	95.4	% Recovery
Ethylbenzene	2.3	0.50	ug/L	Dibromofluoromethane (Surr)	94.0	% Recovery
Total Xylenes	0.86	0.50	ug/L	1,2-Dichloroethane-d4 (Surr)	91.6	% Recovery
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L			
TPH as Gasoline	4000	100	ug/L			
Chloromethane	< 0,50	0.50	ug/L			
Vinyl Chloride	< 0.50	0.50	ug/l_			
Bromomethane	< 20	20	ug/L			
Chloroethane	< 0.50	0.50	ug/L			
Trichlorofluoromethane	< 0.50	0.50	ug/L			
1,1-Dichloroethene	< 0.50	0.50	ug/L			
Methylene Chloride	< 5.0	5,0	ug/L			
trans-1,2-Dichloroethene	< 0.50	0.50	ug/L			
1,1-Dichloroethane	< 0.50	0.50	ug/L			
cis-1,2-Dichloroethene	< 0.50	0.50	ug/L			
Chloroform	< 0.50	0.50	ug/L			
1,1,1-Trichloroethane	< 0.50	0.50	ug/L			
1,2-Dichloroethane	< 0.50	0.50	ug/L			
Carbon Tetrachloride	< 0.50	0.50	ug/L			
Trichloroethene	< 0.50	0.50	ug/L			
1,2-Dichloropropane	< 0.50	0.50	ug/L			
Bromodichloromethane	< 0.50	0.50	ug/L			
cis-1,3-Dichloropropene	< 0.50	0.50	ug/L			
trans-1,3-Dichloropropene	< 0.50	0.50	ug/L			
1,1,2-Trichloroethane	< 0.50	0.50	ug/L			
Tetrachloroethene	< 0.50	0.50	ug/L			
Dibromochloromethane	< 0.50	0.50	ug/L			
Chlorobenzene	< 0,50	0.50	ug/L			
Bromoform	< 0.50	0.50	ug/L			
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ug/L			
1,3-Dichlorobenzene	< 0.50	0.50	ug/L			
1,4-Dichlorobenzene	< 0.50	0.50	ug/L			
1,2-Dichlorobenzene	< 0.50	0.50	ug/L			
1,2-Dibromoethane	< 0.50	0.50	ug/L			

1) MRL = Method reporting limit

Approved By:

Date: 5/3/2005

Sample: MW-2

Project Name:

Discount Tire

Project Number:

Lab Number: 43429-02

Date Analyzed: 4/27/2005

Matrix: Water

Sample Date :4/26/2005

Analysis Method: EPA 8260B

Parameter	Measure Value	ed 1 MRL	Units	Parameter	Measure Value	ed 1 MRL	Units
Benzene	< 0.50	0.50	ug/L	Toluene - d8 (Surr)	101		% Recovery
Toluene	< 0.50	0.50	ug/L	4-Bromofluorobenzene (Surr)	96.1		% Recovery
Ethylbenzene	< 0,50	0.50	ug/L	Dibromofluoromethane (Surr)	104		% Recovery
Total Xylenes	< 0.50	0.50	ug/L	1,2-Dichloroethane-d4 (Surr)	102		% Recovery
Methyl-t-butyl ether (MTBE)	0.75	0,50	ug/L				
TPH as Gasoline	360	50	ug/L				
Chloromethane	< 0.50	0.50	ug/L				•
Vinyl Chloride	< 0.50	0.50	ug/l_				
Bromomethane	< 20	20	ug/L				
Chloroethane	< 0.50	0.50	ug/L				
Trichlorofluoromethane	< 0.50	0.50	ug/L				
1,1-Dichloroethene	< 0.50	0.50	ug/L				
Methylene Chloride	< 5.0	5.0	ug/L	•			
trans-1,2-Dichloroethene	< 0.50	0.50	ug/L				
1,1-Dichloroethane	< 0.50	0.50	ug/L				
cis-1,2-Dichloroethene	1.0	0.50	ug/L				
Chloroform	< 0.50	0.50	ug/L				•
1,1,1-Trichloroethane	< 0.50	0.50	ug/L				
1,2-Dichloroethane	< 0.50	0.50	ug/L				
Carbon Tetrachloride	< 0.50	0.50	ug/L				
Trichloroethene	1.7	0.50	ug/L				
1,2-Dichloropropane	< 0.50	0.50	ug/L				
Bromodichloromethane	< 0.50	0.50	ug/L				
cis-1,3-Dichloropropene	< 0.50	0.50	ug/L				
trans-1,3-Dichloropropene	< 0.50	0.50	ug/L				
1,1,2-Trichloroethane	< 0.50	0.50	ug/L				
Tetrachloroethene	< 0.50	0.50	ug/L				
Dibromochloromethane	< 0.50	0.50	ug/L				
Chlorobenzene	< 0.50	0.50	ug/L				
Bromoform	< 0.50	0.50	ug/L				
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ug/L				
1,3-Dichlorobenzene	< 0.50	0.50	ug/L				
1,4-Dichlorobenzene	< 0.50	0.50	ug/L				
1,2-Dichlorobenzene	< 0.50	0.50	ug/L				
1,2-Dibromoethane	< 0.50	0.50	ug/L				

1) MRL = Method reporting limit

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Joel Kiff

Date: 5/3/2005

Sample: MW-3

Project Name:

Discount Tire

Project Number:

Lab Number: 43429-03

Date Analyzed: 4/27/2005

Matrix: Water

Sample Date :4/26/2005

Analysis Method: EPA 8260B

	14				Magazir	-d 4	
Parameter	Measure Value	ed 1 MRL	Units	Parameter	Measure Value	ed 1 MRL	Units
Benzene	< 0.50	0.50	ug/L	Toluene - d8 (Surr)	98.6		% Recovery
Toluene	< 0.50	0.50	ug/L	4-Bromofluorobenzene (Surr)	94.4		% Recovery
Ethylbenzene	< 0.50	0.50	ug/L	Dibromofluoromethane (Surr)	106		% Recovery
Total Xylenes	< 0.50	0.50	ug/L	1,2-Dichloroethane-d4 (Surr)	105		% Recovery
Methyl-t-butyl ether (MTBE)	0.93	0.50	ug/L				
TPH as Gasoline	< 50	50	ug/L				
Chloromethane	< 0.50	0.50	ug/L				
Vinyl Chloride	< 0.50	0.50	ug/L				
Bromomethane	< 20	20	ug/L				
Chloroethane	< 0.50	0.50	ug/L				
Trichlorofluoromethane	< 0.50	0.50	ug/L				
1,1-Dichloroethene	< 0.50	0.50	ug/L				
Methylene Chloride	< 5.0	5.0	ug/L				
trans-1,2-Dichloroethene	< 0.50	0.50	ug/L				
1,1-Dichloroethane	< 0.50	0.50	ug/L				
cis-1,2-Dichloroethene	< 0.50	0.50	ug/L				
Chloroform	< 0.50	0.50	ug/L				
1,1,1-Trichloroethane	< 0.50	0.50	ug/L				
1,2-Dichloroethane	< 0.50	0.50	ug/L				
Carbon Tetrachloride	< 0.50	0.50	ug/L				
Trichloroethene	2.8	0.50	ug/L				
1,2-Dichloropropane	< 0.50	0.50	ug/L				
Bromodichloromethane	< 0.50	0.50	ug/L				
cis-1,3-Dichloropropene	< 0.50	0.50	ug/L				
trans-1,3-Dichloropropene	< 0.50	0.50	ug/L				
1,1,2-Trichloroethane	< 0.50	0.50	ug/L				
Tetrachloroethene	< 0.50	0.50	ug/L				
Dibromochloromethane	< 0.50	0.50	ug/L				
Chlorobenzene	< 0.50	0.50	ug/L				
Bromoform	< 0.50	0.50	ug/L				
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ug/L				
1,3-Dichlorobenzene	< 0.50	0.50	ug/L				
1,4-Dichlorobenzene	< 0.50	0.50	ug/L				
1,2-Dichlorobenzene	< 0.50	0.50	ug/L				
1,2-Dibromoethane	< 0.50	0.50	ug/L				

1) MRL = Method reporting limit

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Joel Kff

Date: 5/3/2005

Sample: MW-4

Project Name: Discount Tire

Project Number:

Lab Number: 43429-04

Date Analyzed : 4/27/2005, 4/28/2005

Matrix: Water

Sample Date :4/26/2005

Analysis Method: EPA 8260B

Parameter	Measure Value	ed 1 MRL	Units	Parameter	Measured Value Mi	1 RL Units
Benzene	< 0.50	0.50	ug/L	Toluene - d8 (Surr)	103	% Recovery
Toluene	< 0.50	0.50	ug/L	4-Bromofluorobenzene (Surr)	98.2	% Recovery
Ethylbenzene	< 0.50	0.50	ug/L	Dibromofluoromethane (Surr)	104	% Recovery
Total Xylenes	< 0.50	0.50	ug/L	1,2-Dichloroethane-d4 (Surr)	100	% Recovery
Methyl-t-butyl ether (MTBE)	0.64	0.50	ug/L			
TPH as Gasoline	1100	50	ug/L			
Chloromethane	< 0.50	0.50	ug/L			
Vinyl Chloride	< 0.50	0.50	ug/L			
Bromomethane	< 20	20	ug/L			
Chloroethane	< 0.50	0.50	ug/L			
Trichlorofluoromethane	< 0.50	0.50	ug/L			
1,1-Dichloroethene	< 0.50	0.50	ug/L			
Methylene Chloride	< 5.0	5.0	ug/L			
trans-1,2-Dichloroethene	< 0.50	0.50	ug/L			
1,1-Dichloroethane	< 0.50	0.50	ug/L			
cis-1,2-Dichloroethene	0.80	0.50	ug/L			
Chloroform	< 0.50	0.50	ug/L			
1,1,1-Trichloroethane	< 0.50	0.50	ug/L			
1,2-Dichloroethane	< 0.50	0.50	ug/L			
Carbon Tetrachloride	< 0.50	0.50	ug/L			
Trichloroethene	< 0.50	0.50	ug/L			
1,2-Dichloropropane	< 0.50	0.50	ug/L			
Bromodichloromethane	< 0.50	0.50	ug/L			
cis-1,3-Dichloropropene	< 0.50	0.50	ug/L			
trans-1,3-Dichloropropene	< 0.50	0.50	ug/L			
1,1,2-Trichloroethane	< 0.50	0.50	ug/L			
Tetrachloroethene	< 0.50	0.50	ug/L			
Dibromochloromethane	< 0.50	0.50	ug/L			
Chlorobenzene	< 0.50	0.50	ug/L			
Bromoform	< 0.50	0.50	ug/L			
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ug/L			
1,3-Dichlorobenzene	< 0.50	0.50	ug/L			
1,4-Dichlorobenzene	< 0.50	0.50	ug/L			
1,2-Dichlorobenzene	< 0.50	0.50	ug/L			
1,2-Dibromoethane	< 0.50	0.50	ug/L			

1) MRL = Method reporting limit

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Joel Kiff

Date: 5/3/2005

QC Report: Method Blank Data Project Name: Discount Tire

Project Number:

		Method						Method			
	Measured	Reporting		Analysis	Date		Measured	Reporting	ng Taife	Analysis	Date
Parameter	value			Memod	Allalyzed	ralalleto	Value		2	ואובוווסם	Alialyzeu
TPH as Diesel	< 50	20	ng/L	M EPA 8015	4/29/2005	1,3-Dichlorobenzene	< 0.50	0.50	ng/L	EPA 8260B	4/27/2005
Octacosane (Diesel Surrogate)	97.6		%	M EPA 8015	4/29/2005	1,4-Dichlorobenzene	< 0.50	0.50	ng/L	EPA 8260B	4/27/2005
						1,2-Dichlarobenzene	< 0.50	0.50	ng/L	EPA 8260B	4/27/2005
Benzene	< 0.50	0.50	ug/L	EPA 8260B	4/27/2005	1,2-Dibromoethane	< 0.50	0.50	ng/L	EPA 8260B	4/27/2005
Toluene	< 0.50	0.50	ng/L	EPA 8260B	4/27/2005	Toluene - d8 (Surr)	98.4		%	EPA 8260B	4/27/2005
Ethylbenzene	< 0.50	0.50	ng/L	EPA 8260B	4/27/2005	4-Bromofluorobenzene (Surr)	93.5		%	EPA 8260B	4/27/2005
Total Xylenes	< 0.50	0.50	ng/L	EPA 8260B	4/27/2005	Dibromofluoromethane (Surr)	104		%	EPA 8260B	4/27/2005
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	4/27/2005	1,2-Dichloroethane-d4 (Surr)	102		%	EPA 8260B	4/27/2005
TPH as Gasoline	< 50	50	ng/L	EPA 8260B	4/27/2005	Benzene	< 0.50	0.50	no/I.	EPA 8260B	4/28/2005
Chloromethane	< 0.50	0.50	ng/L	EPA 8260B	4/27/2005	Tolliene	< 0.50	0.50	, 7/an	EPA 8260B	4/28/2005
Vinyl Chloride	< 0.50	0.50	ng/L	EPA 8260B	4/27/2005	Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	4/28/2005
Bromomethane	< 20	8	ng/L	EPA 8260B	4/27/2005	Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	4/28/2005
Chloroethane	< 0.50	0.50	ng/L	EPA 8260B	4/27/2005	Methyl-t-hityl ether (MTRE)	0.50	0.50	 	EPA 8260B	4/28/2005
Trichlorofluoromethane	< 0.50	0.50	ng/L	EPA 8260B	4/27/2005		2 1		1 <u>-</u>		4,000,000
1,1-Dichloroethene	< 0.50	0.50	ng/L	EPA 8260B	4/27/2005	IPH as Gasoline	DG v	20	l/6n	EPA 8260B	4/28/2005
Methylene Chloride	< 5.0	5.0	ng/L	EPA 8260B	4/27/2005	Chloromethane	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005
trans-1,2-Dichloroethene	< 0.50	0.50	ug/L	EPA 8260B	4/27/2005	Vinyl Chloride	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005
1,1-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	4/27/2005	Bromomethane	< 20	20	ug/L	EPA 8260B	4/28/2005
cis-1,2-Dichloroethene	< 0.50	0.50	ng/L	EPA 8260B	4/27/2005	Chloroethane	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005
Chloroform	< 0.50	0.50	ug/L	EPA 8260B	4/27/2005	Trichlorofluoromethane	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005
1,1,1-Trichloroethane	< 0.50	0.50	ug/L	EPA 8260B	4/27/2005	1,1-Dichloroethene	< 0.50	0,50	ng/L	EPA 8260B	4/28/2005
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	4/27/2005	Methylene Chloride	< 5.0	5.0	ng/L	EPA 8260B	4/28/2005
Carbon Tetrachloride	< 0.50	0.50	ug/L	EPA 8260B	4/27/2005	trans-1,2-Dichloroethene	< 0.50	0.50	ug/L	EPA 8260B	4/28/2005
Trichlaroethene	< 0.50	0.50	ug/L	EPA 8260B	4/27/2005	1,1-Dichloroethane	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005
1,2-Dichloropropane	< 0.50	0.50	ug/L	EPA 8260B	4/27/2005	cis-1,2-Dichloroethene	< 0.50	0.50	ug/L	EPA 8260B	4/28/2005
Bromodichloromethane	< 0.50	0.50	ng/L	EPA 8260B	4/27/2005	Chloroform	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005
cis-1,3-Dichloropropene	< 0.50	0.50	ng/L	EPA 8260B	4/27/2005	1,1,1-Trichloroethane	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005
trans-1,3-Dichloropropene	< 0.50	0.50	ug/L	EPA 8260B	4/27/2005	1,2-Dichloroethane	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005
1,1,2-Trichloroethane	< 0.50	0.50	ng/L	EPA 8260B	4/27/2005	Carbon Tetrachloride	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005
Tetrachloroethene	< 0.50	0.50	ug/L	EPA 8260B	4/27/2005	Trichloroethene	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005
Dibromochloromethane	< 0.50	0.50	ug/L	EPA 8260B	4/27/2005	1,2-Dichloropropane	< 0.50	0.50	ug/t	EPA 8260B	4/28/2005
Chlorobenzene	< 0.50	0.50	ug/L	EPA 8260B	4/27/2005	Bromodichloromethane	< 0.50	0,50	ng/L	EPA 8260B	4/28/2005
Bromoform	< 0.50	0.50	ug/L	EPA 8260B	4/27/2005	cís-1,3-Dichloroprapene	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005
1,1,2,2-Tetrachioroethane	< 0.50	0.50	ng/L	EPA 8260B	4/27/2005	trans-1,3-Dichloropropene	< 0.50	0.50	ng/L	EPA 82603	4/28/2005

Approved By: Joel Kiff

KIFF ANALYTICAL, LLC

Date: 5/3/2005

QC Report: Method Blank Data

Project Name: Discount Tire

Project Number:

		Method			
	Measured	Reporting	0	Analysis	Date
Parameter	Value	Lilii.	Units	Method	Analyzed
1,1,2-Trichloroethane	< 0.50	0.50	ug/L	EPA 8260B	4/28/2005
Tetrachioroethene	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005
Dibromochloromethane	< 0.50	0.50	ug/L	EPA 8260B	4/28/2005
Chlorobenzene	< 0.50	0.50	ug/L	EPA 8260B	4/28/2005
Bromoform	< 0.50	0.50	ug/L	EPA 8260B	4/28/2005
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005
1,3-Dichlorobenzene	< 0.50	0.50	ug/L	EPA 8260B	4/28/2005
1,4-Dichlorobenzene	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005
1,2-Dichlorobenzene	< 0.50	0.50	ug/L	EPA 8260B	4/28/2005
1,2-Dibromoethane	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005
Toluene - d8 (Surr)	102		%	EPA 8260B	4/28/2005
4-Bromofluorobenzene (Surr)	92.7		%	EPA 8260B	4/28/2005
Dibromofluoromethane (Sum)	100		%	EPA 8260B	4/28/2005
1,2-Dichloroethane-d4 (Surr)	101		%	EPA 8260B	4/28/2005

Measured Reporting Analysis Date
neter Value Limit Units Method Analyzed

Approved By: Joel Kiff

KIFF ANALYTICAL, LLC

Date: 5/3/2005

QC Report: Matrix Spike/ Matrix Spike Duplicate

Project Name: Discount Tire

Project Number:

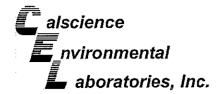
Parameter	Spiked Sample	Sample Spike Value Level	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spiked Sample Value	Units	Analysis Method	Date Analyzed	Spiked Sample Percent Recov.	Duplicate Spiked Sample Percent Recov.	Relative F Percent F Diff.	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
rph as Diesel	Blank	<50	1000	1000	1030	1070	ng/L	M EPA 8015 4/29/05	4/29/05	103	107	4.09	70-130	25
Benzene	43414-02 <0.50	<0.50	40.0	40.0	43.2	42.7	ug/L	EPA 8260B	4/27/05	108	107	1.29	70-130	25
Toluene	43414-02	<0.50	40.0	40.0	43.1	42.2	ng/L	EPA 8260B	4/27/05	108	105	2.22	70-130	25
Tert-Butanol	43414-02	<5.0	200	200	215	199	ug/L	EPA 8260B	4/27/05	108	99.5	7.82	70-130	25
Methyl-t-Butyl Ether 43414-02	ner 43414-02	2.8	40.0	40.0	44.8	44.0	ng/L	EPA 8260B	4/27/05	105	103	1.92	70-130	25
Benzene	43426-03	4. 4.	40.0	40.0	45.0	43.6	ng/L	EPA 8260B	4/28/05	102	98.1	3.69	70-130	25
Toluene		46	40.0	40.0	86.3	83.8	ng/L	EPA 8260B	4/28/05	100	94.2	6.48	70-130	25
Tert-Butanol		<5.0	200	200	196	194	ng/L	EPA 8260B	4/28/05	8.76	96.8	1.11	70-130	25
Methyl-t-Butyl Ether 43426-03	her 43426-03	<0.50	40.0	40.0	37.5	38.2	ng/L	EPA 8260B	4/28/05	93.7	95.4	1.77	70-130	25

Approved By: Joe Kiff

KIFF ANALYTICAL, LLC

Date: 5/3/2005

QC Report: Laboratory Control Sample (LCS)


Discount Tire Project Name:

Project Number:

Spike Level 40.0 40.0 200 Ether 40.0	Units ug/L ug/L ug/L ug/L	Analysis Method EPA 8260B EPA 8260B EPA 8260B	Date Analyzed 4/27/05 4/27/05 4/27/05	LCS Percent Recov. 103 104 103	LCS Percent Recov. Limit 70-130 70-130 70-130
40.0	ng/L	EPA 8260B	4/28/05	98.3	70-130
0.0	ug/L	EPA 8260B	4/28/05	5	70-130
8	ng/L	EPA 8260B	4/28/05	92.0	70-130
0.	ng/L	EPA 8260B	4/28/05	96.1	70-130

Approved By: Joel Kiff

KIFF ANALYTICAL, LLC

May 03, 2005

Joel Kiff Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593

Subject:

Calscience Work Order No.:

Client Reference:

05-04-1614

Discount Tire

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 4/27/2005 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Program Manual, applicable standard operating procedures, and other related documentation. The original report of any subcontracted analysis is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Laboratories, Inc.

Stephen Nowak Project Manager

CA-ELAP ID: 1230

NELAP ID: 03220CA

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

Kiff Analytical

2795 2nd Street, Suite 300 Davis, CA 95616-6593

Date Received:

04/27/05

Work Order No:

05-04-1614

Preparation: Method:

EPA 3005A Filt.

Units:

EPA 200.7 mg/L

Project: Discount Tire

Page 1 of 2

				Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
		05-04-1	614-1	04/26/05	Aqueous	04/27/05	04/28/05	050427L10
Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>					
4.30	0.10	1						
r in designa Elicabetha		05-04-1	614-2	04/26/05	Aqueous	04/27/05	04/28/05	050427L10
Result	RL	<u>DF</u>	<u>Qual</u>					
ND	0.100	1						
udeter vegal. Na akan jaka		05-04-1	614-3	04/26/05	Aqueous	04/27/05	04/28/05	050427L10
Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>					
ND	0.100	1						
		05-04-1	614-4	04/26/05	Aqueous	04/27/05	04/28/05	050427L10
Result	<u>RL</u>	<u>DF</u>	Qual					
0.837	0.100	1						
	4.30 Result ND Result ND Result ND	Result RL 4,30 0,10 Result RL ND 0,100 Result RL ND 0,100 Result RL Result RL Result RL Result RL	Result RL DF	Result 4,30 RL 05-04-1614-2. Result ND 0.100 RL 05-04-1614-3. Result ND 0.100 DF Qual 05-04-1614-3. Result ND 0.100 RL DF Qual 0.100 ND 0.100 DF Qual 0.100 Result RL 05-04-1614-4 Qual 0.100 Result RL DF Qual 0.100 Qual 0.100	Result A30 RL O5-04-1614-1 Qual O4/26/05 Result A30 0.10 1 05-04-1614-2 04/26/05 Result ND 0.100 1 05-04-1614-3 04/26/05 Result ND 0.100 1 Result ND 0.100 1	Number Collected Matrix	Number Collected Matrix Prepared 05-04-1614-1 04/26/05 Aqueous 04/27/05 Result 4.30 RL 0F Qual 0.10 05-04-1614-2 04/26/05 Aqueous 04/27/05 Result ND 0.100 RL 0F Qual 0.100 05-04-1614-3 04/26/05 Aqueous 04/27/05 Result ND 0.100 RL 0F Qual 0.100 0.100 1 05-04-1614-4 04/26/05 Aqueous 04/27/05 Result RL 0F Qual ND 0.100 Result 0.100 Aqueous 04/27/05 Aqueous 04/27/05	Result ND RL DF OJ-04-1614-3 Qual OJ-04-1614-3 Aqueous OJ-04-27/05 04/28/05 Result A30 RL DF OJ-04-1614-2 04/26/05 Aqueous OJ-05-04-1614-3 04/28/05 Result ND RL DF OJ-04-1614-3 04/26/05 Aqueous OJ-07-05 04/27/05 Result ND RL DF OJ-04-1614-3 04/26/05 Aqueous OJ-07-05 04/28/05 Result ND RL DF OJ-04-1614-4 04/26/05 Aqueous OJ-07-05 04/27/05 04/28/05 Result RL DF OJ-04-1614-4 04/26/05 Aqueous OJ-07-05 04/27/05 04/28/05 Result RL DF OJ-04-1614-4 04/26/05 Aqueous OJ-07-05 04/27/05 04/28/05

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifier

Kiff Analytical

2795 2nd Street, Suite 300 Davis, CA 95616-6593

Date Received:

Work Order No:

Preparation: Method:

Units:

04/27/05

05-04-1614 EPA 3010A Total

EPA 200.7

mg/L

Project: Discount Tire

Page 2 of 2

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
MW-1			05-04-1	614-1	04/26/05	Aqueous	04/27/05	04/28/05	050427L10
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual					
Potassium	2.49	0.50	1						
MW-2			05-04-1	614-2	04/26/05	Aqueous	04/27/05	04/28/05	050427L10
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>					
Potassium	3.84	0.50	1						
MW-3			05-04-1	614-3	04/26/05	Aqueous	04/27/05	04/28/05	050427L10
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>					
Potassium	3.87	0.50	1						
MW-4			05-04-1	614-4	04/26/05	Aqueous	04/27/05	04/28/05	050427L10
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>					
Potassium	2.14	0.50	1						
Method Blank			097-01-	012-1,905	N/A	Aqueous	04/27/05	04/28/05	050427L10
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>		<u>Re</u>	sult RL	<u>DF</u> <u>Qual</u>
Iron	ND	0.100	1		Potassium		NE	0.500	1

DF - Dilution Factor ,

Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593 Date Received:

Work Order No:

04/27/05 05-04-1614

Project: Discount Tire

Page 1 of 2

Client Sample Number	-	L	ab Sample Number	Da Colle		Matrix			
MW-1 05-04-1614-1 04/26/05 Agueous									
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	Date Prepared	Date Analyzed	<u>Method</u>	
Nitrite (as N)	ND	0.10	1		mg/L	N/A	04/28/05	EPA 300.0	
Nitrate (as N)	ND	0.10	1		mg/L	N/A	04/28/05	EPA 300.0	
o-Phosphate (as P)	ND	0.10	1		mg/L	N/A	04/28/05	EPA 300.0	
Sulfate	3.4	1.0	1		mg/L	N/A	04/28/05	EPA 300.0	
Ammonia	ND	0.10	1		mg/L	N/A	04/28/05	EPA 350.2	
Total Kieldahl Nitrogen	0.56	0.50	1		mg/L	N/A	04/29/05	EPA 351.3	
Alkalinity, Total (as CaCO3)	530	5.0	1		mg/L	N/A	04/28/05	SM 2320B	
Iron (II)	4.3	0.1	1		mg/L	N/A	04/27/05	SM3500-FeD	

<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>	Date Prepared	Date Analyzed	<u>Method</u>
Nitrite (as N)	ND	0.10	1		mg/L	N/A	04/28/05	EPA 300.0
litrate (as Ń)	1,5	0.1	1		mg/L	N/A	04/28/05	EPA 300.0
o-Phosphate (as P)	ND	0.10	1		mg/L	N/A	04/28/05	EPA 300.0
Sulfate	57	10	10		mg/L	N/A	05/01/05	EPA 300.0
mmonia	ND	0.10	1		mg/L	N/A	04/28/05	EPA 350.2
otal Kieldahl Nitrogen	ND	0.50	1		mg/L	N/A	04/29/05	EPA 351.3
lkalinity, Total (as CaCO3)	400	5.0	1		mg/L	N/A	04/28/05	SM 2320B
ron (II)	ND	0.10	1		mg/L	N/A	04/27/05	SM3500-FeD

MW-3		05-0	4-1614-3	04/2	6/05 A	queous		
Para <u>meter</u>	<u>Result</u>	RL	<u>DF</u>	Qual	<u>Units</u>	Date Prepared	Date Analyzed	<u>Method</u>
Nitrite (as N)	ND	0.10	1		mg/L	N/A	04/28/05	EPA 300.0
Nitrate (as N)	4.1	0.1	1		mg/L	N/A	04/28/05	EPA 300.0
-Phosphate (as P)	0.11	0.10	1		mg/L	N/A	04/28/05	EPA 300.0
Sulfate	57	20	20		mg/L	N/A	05/01/05	EPA 300.0
Ammonia	ND	0.10	1		mg/L	N/A	04/28/05	EPA 350.2
otal Kjeldahl Nitrogen	ND	0.50	1		mg/L	N/A	04/29/05	EPA 351.3
Alkalinity, Total (as CaCO3)	360	5.0	1		mg/L	N/A	04/28/05	SM 2320B
ron (II)	ND	0.10	1		mg/L	N/A	04/27/05	SM3500-Fel

RL - Reporting Limit

DF - Dilution Factor ,

Qual - Qualifiers

Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593 Date Received:

Work Order No:

04/27/05 05-04-1614

Project: Discount Tire

Page 2 of 2

Client Sample Number		Li	ab Sample Number	Da Colle	ite cted	Matrix		
MW-4		05-0)4-1614-4	04/2	6/05 A	queous		
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>	<u>Date Prepared</u>	Date Analyzed	<u>Method</u>
Nitrite (as N)	ND	0.10	1		mg/L	N/A	04/28/05	EPA 300.0
Nitrate (as N)	ND	0.10	1		mg/L	N/A	04/28/05	EPA 300.0
o-Phosphate (as P)	ND	0.10	1		mg/L	N/A	04/28/05	EPA 300.0
Sulfate	16	2	2		mg/L	N/A	05/01/05	EPA 300.0
Ammonia	ND	0.10	1		mg/L	N/A	04/28/05	EPA 350.2
Total Kieldahl Nitrogen	ND	0.50	1		mg/L	N/A	04/29/05	EPA 351.3
Alkalinity, Total (as CaCO3)	460	5.0	1		mg/L	N/A	04/28/05	SM 2320B
Iron (II)	2.0	0.1	1		mg/L	N/A	04/27/05	SM3500-FeD

Method Blank				N)	A A	queous		
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	Date Prepared	Date Analyzed	<u>Method</u>
Nitrite (as N)	ND	0.10	1		mg/L	N/A	04/27/05	EPA 300.0
Nitrate (as N)	ND	0,10	1		mg/L	N/A	04/27/05	EPA 300.0
o-Phosphate (as P)	ND	0.10	1		mg/L	N/A	04/27/05	EPA 300.0
Sulfate	ND	1.0	1		mg/L	N/A	04/27/05	EPA 300.0
Ammonia	ND	0.10	1		mg/L	N/A	04/28/05	EPA 350.2
Total Kieldahl Nitrogen	ND	0.50	1		mg/L	N/A	04/29/05	EPA 351.3
Iron (II)	ND	0.10	1		mg/L	N/A	04/27/05	SM3500-FeD

RL - Reporting Lim

DF - Dilution Factor ,

Qual - Qualifiers

Quality Control - Spike/Spike Duplicate

Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593 Date Received: Work Order No: Preparation: Method: 04/27/05 05-04-1614 EPA 3010A Total EPA 200.7

Project Discount Tire

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
MW-1	Aqueous	ICP 3300	04/27/05	04/28/05	050427510
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD RPD	CL Qualifiers
lron Potassium	4X 109	4X 108	80-120 80-120	4X 0-2 1 0-2	

Mullimu_

Relative Percent Difference . CL - Control Li

Quality Control - Spike/Spike Duplicate

Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593 Date Received: Work Order No:

N/A 05-04-1614

Matrix: Aqueous							<u> </u>		er erese	anağ, şidliğ
<u>Parameter</u>	<u>Method</u>	Quality Control Sample ID	<u>Date</u> Analyzed	<u>Date</u> <u>Extracted</u>	MS% REC	MSD % REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Nitrite (as N)	EPA 300.0	05-04-1622-1	04/28/05	N/A	100	101	68-122	2	0-8	
Nitrate (as N)	EPA 300.0	05-04-1622-1	04/28/05	N/A	100	100	58-142	0	0-6	
o-Phosphate (as P)	EPA 300.0	05-04-1622-1	04/28/05	N/A	105	109	63-141	4	0-12	
Sulfate	EPA 300.0	05-04-1622-1	04/28/05	N/A	114	114	49-133	O	0-3	
!ron (II)	SM3500-FeD	MW-3	04/27/05	N/A	94	97	70-130	3	0-25	

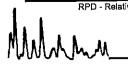
Quality Control - Duplicate

Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593 Date Received: Work Order No:

05-04-1614

N/A

Matrix: Aqueous								
<u>Parameter</u>	Method	QC Sample ID	<u>Date Analyzed</u>	Sample Conc	DUP Conc	RPD	RPD CL	Qualifiers
Alkalinity, Total (as CaCO3) Ammonia Total Kjeldahl Nitrogen	SM 2320B EPA 350.2 EPA 351.3	MW-4 05-04-1352-15 05-04-1632-1	04/28/05 04/28/05 04/29/05	460 18 8400	460 18 8300	0 3 2	0-25 0-25 0-25	


Quality Control - LCS/LCS Duplicate

aboratories, inc

Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593 Date Received: Work Order No: Preparation: Method: N/A 05-04-1614 EPA 3010A Total EPA 200.7

Quality Control Sample ID	The state of the s		Date Date Prepared Analyzed			
097-01-012-1,905	Aqueous	ICP 3300	04/27/05	04/28/05	050427L10	
<u>Parameter</u>	LCS %RE	C LCSD %	REC %RE	EC CL F	RPD RPD CL	Qualifiers
Iron Potassium	104 96	104 99			0 0-20 3 0-20	

Quality Control - LCS/LCS Duplicate

Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593 Date Received: Work Order No:

N/A 05-04-1614

Matrix: Aqueous	막당한 들만 이번 비원하다									
<u>Parameter</u>	<u>Method</u>	Quality Control Sample ID	<u>Date</u> <u>Extracted</u>	<u>Date</u> <u>Analyzed</u>	LCS % REC	LCSD % REC	%REC CL	RPD	RPD CL	<u>Qual</u>
Nitrite (as N)	EPA 300.0	099-05-118-2,694	N/A	04/27/05	99	100	73-115	1	0-26	
Nitrate (as N)	EPA 300.0	099-05-118-2,694	N/A	04/27/05	99	99	87-111	0	0-12	
o-Phosphate (as P)	EPA 300.0	099-05-118-2,694	N/A	04/27/05	108	108	78-126	0	0-22	
Sulfate	EPA 300.0	099-05-118-2,694	N/A	04/27/05	100	100	89-107	0	0-13	

nvironmental Quality Control - Laboratory Control Sample

Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593 Date Received: Work Order No:

N/A 05-04-1614

Matrix : Aqueous									
Parameter	<u>Method</u>	Quality Control Sample ID	<u>Date</u> <u>Analyzed</u>	<u>Date</u> Extracted	Conc Added	Conc Recovered	LCS %Rec	%Rec CL	Qualifiers
Iron (II)	SM3500-FeD	099-05-111-1,909	04/27/05	N/A	1.0	0.97	97	80-120	

Glossary of Terms and Qualifiers

Work Order Number: 05-04-1614

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike or Matrix Spike Duplicate compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

			-	st	$\overline{}$				Λjι	10 :	nae	gp	J 10	ᆿ .	<u>. </u>														•	. / 10	
			e 7 of	Chain-of-Custody Record and Analysis Request	٠,	:ən		<u> </u>	ç	300	۲ '	ر بر	вM			×	: :	×	×	×					•					-	
			Page	ysis F					(7.0	007	z) u	ioni	pe	νlo	esiC	ı×	(×	×	×											
		6		Anal					(009	381	NS.) น	ગા ક	sno	nə ⁼	4 ×	<	×	×	×											
			2				Ī			(/	.00	(2)	шn	issi	sjo ^c	<u>با</u>	<	×	×	×											
			ab No.	ecor		4	ısənt	(0.0							litrate litrog		<	×	×	×]			
tal		Ξ	Lab	ody R		C	Analysis Kequest				((0.0	0E)	əte	silus	\$\\ >	<	×	×	×							_				
Cal Science Environmental	√ay	92841		-Cust			Analy	(8	3501	V 5	VS)	ţţi	uils	λιΑ	[sto]	L >	<	×	×	×								Remarks:			ij
nviro	7440 Lincoln Way	Garden Grove, CA	494	ain-of				KN)	<u>т</u>) и	əße	ontil	V IV	sldal		otal 351.		<	×	×	×							ļ	Rei	Τ		Bill to:
ance E	50 Ling	Grov	714-895-5494	Sp.	1			(z.0	98)	uəf	trog	iN ;	9 92	ino	шшү	/ >	<	×	×	×											
al Scie	744	arden	714	T?			AEGI						Matrix		יוני יסור	s							+	_				-			7
Ö		ഗ		Geotracker COELT EDD REPORT?	0 N		. AE	3641	;;			ŀ	-	εC) _s 2 _s bi 3TAV	N	<u> </u>	×	×	×		-									3
300	3			DD R			de:	T0606793641	EDF Deliverable to (Email Address):	_			Preservative		ONE	 -	X S	X 5	×	X	├	╀		-		<u> </u>		╢			ξ ₀ .
Suite 300	2000			LTEI	S		Sampling Company Log Code:	T060	Mail A	inbox@kiffanalytical.com		inbox@kiffanalytical.com	Prese		FON	-	7	2	2	2		1	Τ-	4							Laboratory:
trapet	716 716	Lab: 530.297.4800	4808	COE	X YES		pany l	•	e to (E	alytic	.; S:	alytic			edlar	<u>''</u> _												kq pa	Dooring htm		
9. Pag	956	.297.	.297	ker	×ı		Com		verabl	ciffan	ddres	iffan	Container		mper Jeeve	-	7	2	2	2		-		•			╁	Received by:	7,1000		Received by
ď	30.5	530	230	ğ			pling	Global ID:	: Deli	×(0)	ail a((8)	Con		oly	4	ις.	2	5	2	-	+					+-				
2704	Davi	Lab	Tax:	ge	Ĺ		Sarr	99		inbc	E-m	inbo		Jec	' ssei	5						-								=	
				!											i	E E	13:02	12:05	11:35	12:34								Date	0146	Care	Date Time
			277	= to):				No.:		43429			Sampling			Date	4/26/05 13:02	4/26/05 12:05	4/26/05 11:35	4/26/05/12:34								1.1.1	MINTEGIO O COLOR		
	k	<u> </u>	TICAL	y or PDI	Joel Kiff			FAX No.:	P.O. No.	,						+							_					11/2	MICH		
		トニー	ANALYTICAL LLC	Project Contact (Hardcopy or PDF to):	ol	Company/Address:	Kiff Analytical, LLC	: No.:	Project Number:		Project Name:	Discount Tire	Project Address:		nple	Designation	1	2	3	4	r							Relinquished by:	12/ 12/	Relinquished by: /	Relinquished by:
				Projec		Comp	 	Phone No.:	Projec		Projec	Disc	Projec		Sample	Des	MW-1	MW-2	MW-3	NAW.4	A 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							Relim	1	Relind	Reling

WORK ORDER #:

05-04-1614

Cooler \(\cdot \) of \(\lambda \)

SAMPLE RECEIPT FORM

DATE: 4-27-05
·
LABORATORY (Other than Calscience Courier): A-\
Not Applicable (N/A):
Yes No N/A

Cyto Culture ENVIRONMENTAL BIOTECHNOLOGY CytoCulture International, Inc. 249 Tewksbury Avenue Pt. Richmond, CA 94801 USA

Kiff Analytical, LLC

Project Name: Discount Tire Project Manager: Joel Kiff

Address: 2795 Second Street, Suite 300

Davis, CA 95616

Tel: 530-297-4800 Fax: 530-297-4808 Email: inbox@kiffanalytical.com

Reporting date: May 2, 2005 CytoCulture lab login: 05-47

P.O. Number: 43429

Samples: Four water samples packed on ice were received 04/27/2005. The samples were stored at 4°C and assayed on the same day. Please see the attached chain of custody form.

AEROBIC Heterotrophic Bacteria Enumeration Assay

Analysis Request: Enumeration of aerobic total heterotrophic bacteria by method 9215A (HPC)/ Standard Methods 9215B modified.

Carbon Source for Total Heterotrophic Bacteria: Growth medium was prepared with standard methods total plate count agar (Difco) containing a wide range of carbon sources derived from yeast extract, tryptone, pancreatic digest of casein and glucose.

Protocol for Total Heterotrophic Bacteria: Sterile agar plates (100 x 15 mm) were prepared with minimal salts and 2.35% heterotrophic plate count agar at pH 6.8 without any other carbon source or nutrients added. Sets of triplicate plates were inoculated with 1.0 ml of sample at log dilutions 10⁻¹, 10⁻², and 10⁻³. The heterotrophic plates were counted after 3 days incubation at 30°C. The plate count data is reported as colony forming units (cfu) per milliliter (ml) of sample. Each enumeration value represents a statistical average of two of the four inoculating log dilutions assayed.

AEROBIC Total Heterotroph Bacteria Enumeration Results

Client Sample Number	Sample Date	Aerobic Total Hertertrophic (cfu/ml)	Target Hydrocarbons Tested
MW-1	04/26/05	4 x 10 ³	Gasoline/Diesel
MW-2	04/26/05	2 x 10 ³	Gasoline/Diesel
MW-3	04/26/05	3 x 10 ³	Gasoline/Diesel
MW-4	04/26/05	3 x 10 ³	Gasoline/Diesel
Sterile Water	04/27/05	0	Gasoline/Diesel
Air Control	04/27/05	0	Gasoline/Diesel
Positive Control	04/27/05	8 x 10 ⁹	Gasoline/Diesel

Reporting Limit for enumeration data is 1.0 x 10¹ cfu/ml.

A hydrocarbon-degrading bacteria positive control sample was run concurrently with each set of samples using a mixed flask culture of bacteria enriched from contaminated UST sites in Northern California.

CytoCulture is available on a consulting basis to assist in the interpretation of these data and their application to field bioremediation protocols.

Sharon Huang Laboratory Technician	Randall von Wedel, Ph.D. Principal Biochemist

70 3 10% For Lab Use Only 0 Chain-of-Custody Record and Analysis Request STD STD RZ STD STD STD STD STD STD **TAT** 15 HL 54 HL 48 HL 15 HL 1 MK 5 MK 4 Lead (7421/239.2) TOTAL 🔲 W.E.T.L **Analysis Request** (80928 AGE) snodrepoleH elitsloV × × × (full List) 82608 (Full List) .ead Scav. (1,2 DCA & 1,2 EDB - 8260B) Oxygenates (8260B) Oxygenates (8260B) Lab No. 43429 VXygenates/TPH Gas/BTEX (8250B) Oxygenates/TPH Gas/BTEX (8260B) (8108M) IIO rotoM as H97 VABIII to: (2108M) leseid as H91 × × × × PH Gas/BTEX/MTBE (8260B) AIA Matrix <u>≗</u> ROIF **R**BTAW × Recommended but not mandatory to complete this section. Sampling Company Log Code: Preservative ∑ Yes NONE Time Received by Laboratory TOC CE × × × aeq@psyber.com EDF Deliverable To (Email Address): T0606793641 EONH 04265/1605/ 05oma California EDF Report? AEGI HCI Time Received by: Received by REDLAR MALLON 2795 2nd Street Suite 300 Container **MBER** POLY Lab: 530.297.4800 Fax: 530.297.4808 Time Davis, CA 95616 SLEEVE 4360511HS AOV Im 04 IQ 40 LO Ю Sampler Signature: Global ID: 205 282 234 Time Date Date Date Sampling 0 Date Project Contact (Hardcopy or PDF To): 916.645.6098 4NALYTICAL LLC Applied Engineering & Geology, Inc. P.O. No.: Fax No.: Discount Tire Stan Walker 3ox 247 Lincoln, CA 95648 1200 | Street Company / Address: Designation Project Number: Project Address: Relinquished by: Relinquished by: 916.645.6014 Project Name: Sample Phone No.: MW-3 MW4 MW-1 MW-2

Chain-of-Custody Record and Analysis Request STD STO STD 15 HL 54 HL 48 HL 15 HL 1 ANK 5 ANK TAT 2 ₽ N Page **Analysis Request** × × × Aerobic Heterotrophic Plate Count (SM 9215B) (Y.002) noti baylossi0 × × Ferrous Iron (SM 3500) (T.002) mulassito9 × × Lab No. 43429 (0.005) etsiqeoriq orthO × × × Nitrate as Nitrogen, Nitrite as Nitrogen, Remarks: Total Alkalinity (SM 2320B) & Sulfate (300.0) × × Total Kjeldahi Nitrogen (351.3) Ammonia as Nitrogen (350.2) × × Matrix 욷 SOIL × × **MATER** × × Recommended but not mandatory to complete this section **Preservative** . Yes Time Received by Laboratory: NONE ICE × × × T0605793641 EDF Deliverable To (Email Address): aed@psyber.com 04265 165 OFFINE Sampling Company Log Code: California EDF Report? HCI Time Received by: Received by MALLON 2795 2nd Street Suite 300 Container омн) эадн іш об m m 34GH IM 097 m Davis, CA 95616 Lab: 530.297.4800 Fax: 530.297.4808 Time 340H Im 008 2 Signature: 1 ~ (,O2_xH) TedmA L N 15000) Global ID: 1205 1135 1-X-05 130A Sampler 1834 Date Date Date Time Sampling ō. Date Project Contact (Hardcopy or PDF To): 916.645.6098 ppiled Engineering & Geology, Inc. P.O. No.: Fax No.: Discount Tire Stan Walker 3ox 247 Lincoln, CA 95648 Company / Address: 1200 I Street Designation Relinquished by: Project Number: Project Address: 916.645.6014 QMR 2005 Project Name: Sample Phone No.: MW-2 MW-3 MW-1 MW4

20. 20.

S 1

For Lab Use Only

Date: 7/18/2005

Stan Walker Applied Engineering & Geology, Inc. P. O. Box 247 Lincoln, CA 95648

Subject: 4 Water Samples Project Name: Discount Tire

Project Number:

Dear Mr. Walker,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed.

Kiff Analytical is certified by the State of California (# 2236). If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Date: 7/18/2005

Subject: 4 Water Samples Project Name: Discount Tire

Project Number:

Case Narrative

The Method Reporting Limit for TPH as Diesel is increased due to interference from Gasoline-Range Hydrocarbons for samples MW-1, MW-2 and MW-4.

Approved Bv:

Joe Kiff

2795 2nd St, Suite 300 Davis, CA 95616 530-297-4800

Project Name : **Discount Tire**

Project Number:

Sample: **MW-1** Matrix: Water Lab Number: 44756-01

Sample Date :7/12/2005

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
TPH as Diesel	< 1500	1500	ug/L	M EPA 8015	7/15/2005
Octacosane (Diesel Surrogate)	99.4		% Recovery	M EPA 8015	7/15/2005

Sample: MW-2 Matrix: Water Lab Number: 44756-02

Sample Date :7/12/2005

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
TPH as Diesel	< 300	300	ug/L	M EPA 8015	7/15/2005
Octacosane (Diesel Surrogate)	101		% Recovery	M EPA 8015	7/15/2005

Sample: MW-3 Matrix: Water Lab Number: 44756-03

Sample Date :7/12/2005

Parameter Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
TPH as Diesel	< 50	50	ug/L	M EPA 8015	7/14/2005
Octacosane (Diesel Surrogate)	111		% Recovery	M EPA 8015	7/14/2005

Approved By:

Joel Kiff

Report Number: 44756

Date: 7/18/2005

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Date: 7/18/2005

Project Name : **Discount Tire**

Project Number:

Sample: MW-4 Matrix: Water Lab Number: 44756-04

Sample Date :7/12/2005

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
TPH as Diesel	< 300	300	ug/L	M EPA 8015	7/14/2005
Octacosane (Diesel Surrogate)	107		% Recovery	M EPA 8015	7/14/2005

Approved By:

Joel Kiff

Date: 7/18/2005

Sample: MW-1

Project Name: Discount Tire

Project Number : Lab Number : 44756-01 Date Analyzed : 7/14/2005, 7/15/2005

Matrix : Water Sample Date :7/12/2005 Analysis Method: EPA 8260B

Parameter	Measure Value	d 1 MRL	Units			
Benzene	< 0.50	0.50	ug/L			
Toluene	< 0.50	0.50	ug/L			
Ethylbenzene	2.8	0.50	ug/L			
Total Xylenes	0.85	0.50	ug/L			
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L			
TPH as Gasoline	5000	150	ug/L			
Chloromethane	< 0.50	0.50	ug/L			
Vinyl Chloride	< 0.50	0.50	ug/L			
Bromomethane	< 20	20	ug/L			
Chloroethane	< 0.50	0.50	ug/L			
Trichlorofluoromethane	< 0.50	0.50	ug/L			
1,1-Dichloroethene	< 0.50	0.50	ug/L			
Methylene Chloride	< 5.0	5.0 (2)	ug/L			
trans-1,2-Dichloroethene	< 0.50	0.50	ug/L			
1,1-Dichloroethane	< 0.50	0.50	ug/L			
cis-1,2-Dichloroethene	0.52	0.50	ug/L			
Chloroform	< 0.50	0.50	ug/L			
1,1,1-Trichloroethane	< 0.50	0.50	ug/L			
1,2-Dichloroethane	< 0.50	0.50	ug/L			
Carbon Tetrachloride	< 0.50	0.50	ug/L			
Trichloroethene	< 2.0	2.0 (2)	ug/L			
1,2-Dichloropropane	< 0.50	0.50	ug/L			
Bromodichloromethane	< 0.50	0.50	ug/L			
cis-1,3-Dichloropropene	< 0.50	0.50	ug/L			
trans-1,3-Dichloropropene	< 0.50	0.50	ug/L			
1,1,2-Trichloroethane	< 8.0	8.0 (2)	ug/L			
Tetrachloroethene	< 0.50	0.50	ug/L			
Dibromochloromethane	< 0.50	0.50	ug/L			
Chlorobenzene	< 0.50	0.50	ug/L			
Bromoform	< 0.50	0.50	ug/L			
1,1,2,2-Tetrachloroethane	< 0.80	0.80 (2)	ug/L			
1,3-Dichlorobenzene	< 0.50	0.50	ug/L			
1,4-Dichlorobenzene	< 0.50	0.50	ug/L			
1,2-Dichlorobenzene	< 0.50	0.50	ug/L			
1,2-Dibromoethane	< 0.50	0.50	ug/L			

Parameter	Measured Value	d 1 MRL	Units
Toluene - d8 (Surr)	91.6		% Recovery
4-Bromofluorobenzene (Surr)	108		% Recovery
Dibromofluoromethane (Surr)	101		% Recovery
1,2-Dichloroethane-d4 (Surr)	86.9		% Recovery

Approved By:

Joel Kiff

¹⁾ MRL = Method reporting limit

²⁾ MRL raised due to interference

Measured

Value

100

106

112

97.8

MRL

Units

% Recovery

% Recovery

% Recovery

% Recovery

Date: 7/18/2005

Sample: MW-2

Project Name: **Discount Tire**

Project Number: Lab Number: 44756-02 Date Analyzed: 7/14/2005

Parameter

Toluene - d8 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

1,2-Dichloroethane-d4 (Surr)

Matrix: Water Sample Date :7/12/2005 Analysis Method: EPA 8260B

Parameter	Measure Value	d 1 MRL	Units
Benzene	< 0.50	0.50	ug/L
Toluene	< 0.50	0.50	ug/L
Ethylbenzene	< 0.50	0.50	ug/L
Total Xylenes	< 0.50	0.50	ug/L
Methyl-t-butyl ether (MTBE)	0.85	0.50	ug/L
TPH as Gasoline	440	50	ug/L
Chloromethane	< 0.50	0.50	ug/L
Vinyl Chloride	< 0.50	0.50	ug/L
Bromomethane	< 20	20	ug/L
Chloroethane	< 0.50	0.50	ug/L
Trichlorofluoromethane	< 0.50	0.50	ug/L
1,1-Dichloroethene	< 0.50	0.50	ug/L
Methylene Chloride	< 5.0	5.0	ug/L
trans-1,2-Dichloroethene	< 0.50	0.50	ug/L
1,1-Dichloroethane	< 0.50	0.50	ug/L
cis-1,2-Dichloroethene	1.4	0.50	ug/L
Chloroform	< 0.50	0.50	ug/L
1,1,1-Trichloroethane	< 0.50	0.50	ug/L
1,2-Dichloroethane	< 0.50	0.50	ug/L
Carbon Tetrachloride	< 0.50	0.50	ug/L
Trichloroethene	2.5	0.50	ug/L
1,2-Dichloropropane	< 0.50	0.50	ug/L
Bromodichloromethane	< 0.50	0.50	ug/L
cis-1,3-Dichloropropene	< 0.50	0.50	ug/L
trans-1,3-Dichloropropene	< 0.50	0.50	ug/L
1,1,2-Trichloroethane	< 0.50	0.50	ug/L
Tetrachloroethene	< 0.50	0.50	ug/L
Dibromochloromethane	< 0.50	0.50	ug/L
Chlorobenzene	< 0.50	0.50	ug/L
Bromoform	< 0.50	0.50	ug/L
1,1,2,2-Tetrachloroethane	< 1.0	1.0 (2)	ug/L
1,3-Dichlorobenzene	< 0.50	0.50	ug/L
1,4-Dichlorobenzene	< 0.50	0.50	ug/L
1,2-Dichlorobenzene	< 0.50	0.50	ug/L
1,2-Dibromoethane	< 0.50	0.50	ug/L

1)	MKL	= 1/16	etnoa	rep	00	rτır	ηg	IIMIT	

²⁾ MRL raised due to interference

Approved By:

Measured

Value

99.7

104

113

103

MRL

Units

% Recovery

% Recovery

% Recovery

% Recovery

Date: 7/18/2005

Sample: MW-3

Project Name: **Discount Tire**

Project Number: Lab Number: 44756-03 Date Analyzed: 7/14/2005

Parameter

Toluene - d8 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

1,2-Dichloroethane-d4 (Surr)

Matrix: Water Sample Date :7/12/2005 Analysis Method: EPA 8260B

Parameter	Measure Value	d 1 MRL	Units
Benzene	< 0.50	0.50	ug/L
Toluene	< 0.50	0.50	ug/L
Ethylbenzene	< 0.50	0.50	ug/L
Total Xylenes	< 0.50	0.50	ug/L
Methyl-t-butyl ether (MTBE)	1.0	0.50	ug/L
TPH as Gasoline	< 50	50	ug/L
Chloromethane	< 0.50	0.50	ug/L
Vinyl Chloride	< 0.50	0.50	ug/L
Bromomethane	< 20	20	ug/L
Chloroethane	< 0.50	0.50	ug/L
Trichlorofluoromethane	< 0.50	0.50	ug/L
1,1-Dichloroethene	< 0.50	0.50	ug/L
Methylene Chloride	< 5.0	5.0	ug/L
trans-1,2-Dichloroethene	< 0.50	0.50	ug/L
1,1-Dichloroethane	< 0.50	0.50	ug/L
cis-1,2-Dichloroethene	< 0.50	0.50	ug/L
Chloroform	< 0.50	0.50	ug/L
1,1,1-Trichloroethane	< 0.50	0.50	ug/L
1,2-Dichloroethane	< 0.50	0.50	ug/L
Carbon Tetrachloride	< 0.50	0.50	ug/L
Trichloroethene	3.3	0.50	ug/L
1,2-Dichloropropane	< 0.50	0.50	ug/L
Bromodichloromethane	< 0.50	0.50	ug/L
cis-1,3-Dichloropropene	< 0.50	0.50	ug/L
trans-1,3-Dichloropropene	< 0.50	0.50	ug/L
1,1,2-Trichloroethane	< 0.50	0.50	ug/L
Tetrachloroethene	< 0.50	0.50	ug/L
Dibromochloromethane	< 0.50	0.50	ug/L
Chlorobenzene	< 0.50	0.50	ug/L
Bromoform	< 0.50	0.50	ug/L
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ug/L
1,3-Dichlorobenzene	< 0.50	0.50	ug/L
1,4-Dichlorobenzene	< 0.50	0.50	ug/L
1,2-Dichlorobenzene	< 0.50	0.50	ug/L
1,2-Dibromoethane	< 0.50	0.50	ug/L

¹⁾ MRL = Method reporting limit

Approved By:

²⁾ MRL raised due to interference

Measured

Value

101

105

111

100

MRL

Units

% Recovery

% Recovery

% Recovery

% Recovery

Date: 7/18/2005

Sample: MW-4

Project Name: Discount Tire

Project Number: Lab Number: 44756-04 Date Analyzed: 7/14/2005

Parameter

Toluene - d8 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

1,2-Dichloroethane-d4 (Surr)

Matrix : Water Sample Date :7/12/2005 Analysis Method: EPA 8260B

		_	
Parameter	Measure Value	d 1 MRL	Units
Benzene	< 0.50	0.50	ug/L
Toluene	< 0.50	0.50	ug/L
Ethylbenzene	< 0.50	0.50	ug/L
Total Xylenes	< 0.50	0.50	ug/L
Methyl-t-butyl ether (MTBE)	0.72	0.50	ug/L
TPH as Gasoline	1200	50	ug/L
Chloromethane	< 0.80	0.80 (2)	ug/L
Vinyl Chloride	0.51	0.50	ug/L
Bromomethane	< 20	20	ug/L
Chloroethane	< 0.50	0.50	ug/L
Trichlorofluoromethane	< 0.50	0.50	ug/L
1,1-Dichloroethene	< 0.50	0.50	ug/L
Methylene Chloride	< 5.0	5.0	ug/L
trans-1,2-Dichloroethene	< 0.50	0.50	ug/L
1,1-Dichloroethane	< 0.50	0.50	ug/L
cis-1,2-Dichloroethene	1.6	0.50	ug/L
Chloroform	< 0.50	0.50	ug/L
1,1,1-Trichloroethane	< 0.50	0.50	ug/L
1,2-Dichloroethane	< 0.50	0.50	ug/L
Carbon Tetrachloride	< 0.50	0.50	ug/L
Trichloroethene	< 1.0	1.0 (2)	ug/L
1,2-Dichloropropane	< 0.50	0.50	ug/L
Bromodichloromethane	< 0.50	0.50	ug/L
cis-1,3-Dichloropropene	< 0.50	0.50	ug/L
trans-1,3-Dichloropropene	< 0.50	0.50	ug/L
1,1,2-Trichloroethane	< 0.50	0.50	ug/L
Tetrachloroethene	< 0.50	0.50	ug/L
Dibromochloromethane	< 0.50	0.50	ug/L
Chlorobenzene	< 0.50	0.50	ug/L
Bromoform	< 0.50	0.50	ug/L
1,1,2,2-Tetrachloroethane	< 2.0	2.0 (2)	ug/L
1,3-Dichlorobenzene	< 0.50	0.50	ug/L
1,4-Dichlorobenzene	< 0.50	0.50	ug/L
1,2-Dichlorobenzene	< 0.50	0.50	ug/L
1,2-Dibromoethane	< 0.50	0.50	ug/L

1)	MRL = Method reporting limit
2)	MRL raised due to interference

Approved By:

Joel Kiff

Date: 7/18/2005

QC Report: Method Blank Data Project Name: Discount Tire

Project Number:

	Measured	Method	5	Analysis	Date		Measured	Method	_	Analysis	Date
Parameter	Value	Limit	Units	Method	Analyzed	Parameter	Value	Limit	Units	Method	Analyzed
TPH as Diesel	< 50	90	ng/L	M EPA 8015 7/14/2005	7/14/2005	1,3-Dichlorobenzene	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005
Octacosane (Diesel Surrogate)	97.0		%	M EPA 8015 7/14/2005	7/14/2005	1,4-Dichlorobenzene	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005
						1,2-Dichlorobenzene	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005
Benzene	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005	1,2-Dibromoethane	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005
Toluene	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005	Toluene - d8 (Surr)	100		%	EPA 8260B	7/14/2005
Ethylbenzene	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005	4-Bromofluorobenzene (Surr)	105		%	EPA 8260B	7/14/2005
Total Xylenes	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005	Dibromofluoromethane (Surr)	114		%	EPA 8260B	7/14/2005
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005	1,2-Dichloroethane-d4 (Surr)	102		%	EPA 8260B	7/14/2005
TPH as Gasoline	< 50	50	ng/L	EPA 8260B	7/14/2005		Ç.	C	701	00000	7/45/2005
Chloromethane	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005	rn as Gasoline	06 >	00	ug/r	EFA 0200B	007/61//
Vinyl Chloride	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005						
Bromomethane	< 20	20	ng/L	EPA 8260B	7/14/2005						
Chloroethane	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005						
Trichlorofluoromethane	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005						
1,1-Dichloroethene	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005						
Methylene Chloride	< 5.0	2.0	ng/L	EPA 8260B	7/14/2005						
trans-1,2-Dichloroethene	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005						
1,1-Dichloroethane	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005						
cis-1,2-Dichloroethene	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005						
Chloroform	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005						
1,1,1-Trichloroethane	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005						
1,2-Dichloroethane	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005						
Carbon Tetrachloride	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005						
Trichloroethene	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005						
1,2-Dichloropropane	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005						
Bromodichloromethane	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005						
cis-1,3-Dichloropropene	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005						
trans-1,3-Dichloropropene	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005						
1,1,2-Trichloroethane	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005						
Tetrachloroethene	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005						
Dibromochloromethane	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005						
Chlorobenzene	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005						
Bromoform	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005						
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ng/L	EPA 8260B	7/14/2005						

Approved By: Joel Kiff

KIFF ANALYTICAL, LLC

QC Report: Matrix Spike/ Matrix Spike Duplicate

Report Number: 44756

Date: 7/18/2005

Project Name: Discount Tire

Project Number:

Sample Spike Value Level
1000 1000 868
40.0 40.0 41.8
40.0
40.0 40.0 40.1
40.1
40.0
195
40.0 40.0 36.2 35.7

Approved By: Joe kiff

KIFF ANALYTICAL, LLC

2795 2nd St, Suite 300 Davis, CA 95616 530-297-4800

Date: 7/18/2005

QC Report : Laboratory Control Sample (LCS)

Project Name: Discount Tire

Project Number:

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
Benzene	40.0	ng/L	EPA 8260B	7/14/05	•	70-130
Toluene	40.0	ng/L	EPA 8260B	7/14/05	103	70-130
Tert-Butanol	200	ng/L	EPA 8260B	7/14/05	107	70-130
Methyl-t-Butyl Ether	40.0	ng/L	EPA 8260B	7/14/05	9.96	70-130
Benzene	40.0	ng/L	EPA 8260B	7/15/05	9.76	70-130
Toluene	40.0	ng/L	EPA 8260B	7/15/05	97.9	70-130
Tert-Butanol	200	ng/L	EPA 8260B	7/15/05	9.96	70-130
Methyl-t-Butyl Ether	40.0	ng/L	EPA 8260B	7/15/05	88.6	70-130

Job Kiff

Approved By:

KIFF ANALYTICAL, LLC

2795 2nd St, Suite 300 Davis, CA 95616 530-297-4800

Chain-of-Custody Record and Analysis Request **Analysis Request** (fail liu7) 80628 A93 -esd Scav. (1,2 DCA & 1,2 EDB - 8260B) Oxygenates (8260B) ab No. 4475-Le 5 Oxygenates (8260B) Oxygenates/TPH Gas/BTEX (8260B) 5 Oxygenates/TPH Gas/BTEX (8260B) TPH as Motor Oil (M8015) × × × (2108M) leseiG as H97 × × × × PH Gas/BTEX/MTBE (8260B) AIR Matrix **2** □ SOIF **MATER** × × × × Recommended but not mandatory to complete this section: **Preservative** ✓ Yes NONE × × × × ICE aeg@psyber.com **EDF Deliverable To (Email Address)** T0606793641 Sampling Company Log Code: California EDF Report? × HCI × × × AEGI **MAJO31** 100 V 2795 2nd Street Suite 300 Container **ABBER** POLY Lab: 530.297.4800 Fax: 530.297.4808 Davis, CA 95616 SLEEVE Signature: AOV Im 04 S S S S Global ID Sampler ナセニ 7-12-0512339 Time 1901 श्राप Sampling <u>о</u>. Date Project Contact (Hardcopy or PDF To) 916.645.6098 Applied Engineering & Geology, Inc. P.O. No. Fax No.: **Discount Tire** Stan Walker Box 247 Lincoln, CA 95648 1200 | Street Company / Address: Designation Project Number: Project Address: 916.645.6014 Project Name: Sample Phone No.:

ठ

STD STD STD

STD

8 8

STD STD STD STD

× × ×

MW-2 MW-3

₹

ZW-1

5

For Lab Use Only

TAT

.T.∃.W

ე ტ

Page

12 HL 24 HL 48 HL 12 HL 1 MK 2 MK

Lead (7.421/239.2) JATOT (S.952\rangle 1247) bs9_

Volatile Halocarbons (EPA 8260B)

Coolant present 2) N Initial MAS Sha Come rime [310_ Remarks Bill to: IF MANAGED Time Received by Laboratory: 1020 MILLILLE Received by Received by Time **\$** Time 12005 071355 Date Date Relinguished by Relinquished by Relinquished

APPENDIX D

AB2886 Submittal Report

Electronic Submittal Information

Main Menu | View/Add Facilities | Upload EDD | Check EDD

DISCOUNT TIRE - T0606793641

1200 I ST

SACRAMENTO, CA 95814

* DENOTES THAT A SUBMITTAL HAS BEEN AUTO-RECEIVED

DF SUBMIT	TALS						
CONF NUM	TITLE	QUARTER	SUBMITTED BY	DAIL	STATUS		
6257433295	PIER	Q4 2001	EARL STEPHENS		RECEIVED ON 3/6/2003	<u>VIEW</u> SUBMITTAL	<u>QC</u> REPOR
3054859340	DISCOUNT TIRE EDF 02A	Q1 2002	EARL STEPHENS	3/21/2002	RECEIVED ON 5/10/2002	<u>VIEW</u> SUBMITTAL	<u>QC</u> REPOR
4646438479	QUARTERLY MONITORING REPORT, SECOND QUARTER 2002	Q2 2002	EARL STEPHENS		RECEIVED ON 7/19/2002	<u>VIEW</u> SUBMITTAL	<u>QC</u> REPOR
4710105001	(27491) QMR 02C	Q3 2002	EARL STEPHENS	9/4/2002	RECEIVED ON 10/16/2002	<u>VIEW</u> SUBMITTAL	<u>QC</u> REPOR
9604175686	(29381) QMR 02D	Q4 2002	EARL STEPHENS	11/20/2002	RECEIVED ON 4/1/2003	<u>VIEW</u> SUBMITTAL	<u>QC</u> REPOR
6126838147	(31278) QMR 03A	Q1 2003	EARL STEPHENS	3/21/2003	RECEIVED ON 7/11/2003	<u>VIEW</u> SUBMITTAL	<u>QC</u> <u>REPOR</u>
6362167119	(32846) QMR 03B	Q2 2003	EARL STEPHENS	5/21/2003	RECEIVED ON 7/16/2003	<u>VIEW</u> SUBMITTAL	<u>QC</u> REPOR
3799719810	(34263) QMR 03C	Q3 2003	EARL STEPHENS	8/14/2003	RECEIVED ON 9/11/2003	<u>VIEW</u> SUBMITTAL	<u>QC</u> REPOR
6859316706	(36005) QMR 03D & STATUS OF WORKPLAN #2	Q4 2003	EARL STEPHENS	12/19/2003	12/26/2003	<u>VIEW</u> SUBMITTAL	<u>QC</u> REPOR
5665729939	(36687) QMR 04A	Q1 2004	EARL STEPHENS	2/13/2004	RECEIVED ON 2/17/2004	<u>VIEW</u> SUBMITTAL	<u>QC</u> REPOR
2218901455	(37830) QMR 04B & RFC	Q2 2004	EARL STEPHENS	5/28/2004	RECEIVED ON 6/3/2004	<u>VIEW</u> SUBMITTAL	<u>QC</u> REPOR
3262231945	(39664) QMR 04C	Q3 2004	EARL STEPHENS	8/27/2004	RECEIVED ON 9/2/2004	<u>VIEW</u> SUBMITTAL	<u>QC</u> REPOR
7457821607	(40578) QMR 04D	Q4 2004	EARL STEPHENS	10/25/2004	RECEIVED ON 11/3/2004	<u>VIEW</u> SUBMITTAL	QC REPOR
9392729640	DISCOUNT TIRE QMF 05A (41928)	R Q1 2005	EARL STEPHENS	1/21/2005	RECEIVED ON 1/26/2005	VIEW SUBMITTAL	<u>QC</u> REPOR
7973517060	(43429) DISCOUNT TIRE 05B	Q2 2005	EARL STEPHENS	5/9/2005	RECEIVED ON 5/20/2005	S <u>VIEW</u> SUBMITTAL	<u>QC</u> REPOF
4003679811	(44756) DISCOUNT TIRE 05C	Q3 2005	EARL STEPHENS	8/1/2005	PENDING	<u>VIEW</u> SUBMITTAL	DELETE QC SUBMITTAL REPOR

CONF NUM TITLE SUBMITTED BY SUBMIT DATE STATUS
1207569718 DISCOUNT TIRE GEO_XY EARL STEPHENS 5/22/2002 RECEIVED ON 3/6/2003 VIEW SUBMITTAL

GEO_Z SUBI	MITTALS			
CONF NUM	TITLE	SUBMITTED BY	SUBMIT DATE STATUS	
2756641983	DISCOUNT TIRE GEO_Z	EARL STEPHENS	5/22/2002 RECEIVED ON 3	/6/2003 <u>VIEW SUBMITTAL</u>

GEO WELL	SUBMITTALS	···				-
		CURATTED BY	SUBMIT	CTATIIC		
CONF NUM	TITLE	SUBMITTED BY	DATE	STATUS		•
9687504410	DISCOUNT TIRE GEO_WELL 02A	EARL STEPHENS	3/21/2002	RECEIVED ON 3/6/2003	<u>VIEW</u> SUBMITTAL	
5105930924	DISCOUNT TIRE GEO WELL 02B	EARL STEPHENS	5/22/2002	RECEIVED ON 3/6/2003	<u>VIEW</u> SUBMITTAL	
5219914078	DISCOOUNT TIRE GEO WELL 02C	EARL STEPHENS	9/4/2002	RECEIVED ON 3/6/2003	<u>VIEW</u> SUBMITTAL	
3067967057	DISCOUNT TIRE GEO WELL 02D	EARL STEPHENS	11/20/2002	RECEIVED ON 3/6/2003	<u>VIEW</u> SUBMITTAL	
6897918522	DISCOUNT TIRE GEO WELL 03A	EARL STEPHENS	3/21/2003	RECEIVED ON 7/11/2003	<u>VIEW</u> SUBMITTAL	
6926502823	DISCOUNT TIRE GEO WELL 03B	EARL STEPHENS	5/21/2003	RECEIVED ON 7/11/2003	<u>VIEW</u> SUBMITTAL	J
8616337418	DISCOUNT TIRE QMR 03C	EARL STEPHENS	8/14/2003	RECEIVED ON 9/5/2003	<u>VIEW</u> SUBMITTAL	
7013432145	QMR 03D & STATUS OF WORKPLAN #2	EARL STEPHENS	12/19/2003	RECEIVED ON 12/26/2003	<u>VIEW</u> SUBMITTAL	•
2757995426	DISCOUNT TIRE QMR 04A	EARL STEPHENS	2/13/2004	RECEIVED ON 2/17/2004	<u>VIEW</u> SUBMITTAL	
8578159928	QMR 04B & RFC	EARL STEPHENS	5/28/2004	RECEIVED ON 6/3/2004	<u>VIEW</u> SUBMITTAL	
1844914078	QMR 04C	EARL STEPHENS	8/27/2004	RECEIVED ON 9/2/2004	<u>VIEW</u> SUBMITTAL	
7709808170	DISCOUNT TIRE QMR 04D	EARL STEPHENS	10/25/2004	RECEIVED ON 11/3/2004	<u>VIEW</u> SUBMITTAL	
2715835392	DISCOUNT TIRE QMR 05A GEO WELL	EARL STEPHENS	1/19/2005	RECEIVED ON 1/26/2005	<u>VIEW</u> SUBMITTAL	
6946552872	DISCOUNT TIRE 05B GEO_WELL	EARL STEPHENS	5/9/2005	RECEIVED ON 5/20/2005	<u>VIEW</u> SUBMITTAL	
2265965104	DISCOUNT TIRE 05C	EARL STEPHENS	8/1/2005	PENDING	<u>VIEW</u> SUBMITTAL	<u>DELETE</u> SUBMITTAL

GEO_MAP S	UBMITTALS					
CONF NUM	TITLE	SUBMITTED BY	SUBMIT DATE	STATUS		
8793393790	GEO MAP	EARL STEPHENS	4/2/2002	DENIED ON 4/1/2003	VIEW SUBMITTAL	DENIAL REASON
1727262198	GEO MAP	EARL STEPHENS	8/14/2003	RECEIVED ON 8/20/2003	VIEW SUBMITTAL	
5838758170		EARL STEPHENS	8/14/2003	RECEIVED ON 8/20/2003	VIEW SUBMITTAL	
2135541617		EARL STEPHENS	9/19/2003	RECEIVED ON 10/29/2003	VIEW SUBMITTAL	
	GEO MAP	EARL STEPHENS	9/19/2003	RECEIVED ON 10/29/2003	<u>VIEW SUBMITTAL</u>	
6441083610	GEO_MAP	EARL STEPHENS	4/1/2004	RECEIVED ON 4/7/2004	VIEW SUBMITTAL	

GEO BORE SUBMITTALS	
OEO_BORE_GOB	
NO GEO_BORE SUBMITTALS FOR THIS FACILITY.	

GEO_REPOR	RT SUBMITTALS			
CONF NUM	TITLE	SUBMITTED BY	SUBMIT DATE STATUS	VIEW SUBMITTAL
5636609733	DISCOUNT TIRE 05A	EARL STEPHENS	4/11/2005 RECEIVED ON 4/20/2005	

ı		
ı	NAME CHANGE SUBMITTALS	
ı		
ı	NO NAME CHANGE SUBMITTALS FOR THIS FACILITY.	
ı	NO NAME OF ACCOUNT IN CO. C.	
ı		

DUPLICATE FACILITY SUBMITTALS	
NO DUPLICATE FACILITY SUBMITTALS FOR THIS FACILITY.	

Logged in as AEG, INC. AS REP (AUTH_RP)

CONTACT SITE ADMINISTRATOR.

APPENDIX E

Correspondence

Countywide Services Agency

Environmental Management Department

Water Protection Division Cecilia Jensen, Chief

Terry Schutten, County Executive Penelope Clarke, Agency Administrator Mel Knight, Department Director

March 28, 2005

Dorothy Noyes Alice Noyes Betty Van Meter P.O. Box 621 Lincoln, CA 95648

Dear Mesdames:

SUBJECT: LOCAL OVERSIGHT PROGRAM SITE NO. F575

DISCOUNT TIRES 1200 I STREET

SACRAMENTO, CA 95814

On November 17, 2004, this site was submitted for closure consideration to Sacramento County Environmental Management Site Assessment and Mitigation Section (SAMS) staff and State Waterboard Region 5 representative. Closure was not granted due to the absence of a declining trend in groundwater contaminant concentrations at MW-1. The staff requested completion of a Feasibility Study comparing natural attenuation and reduced monitoring with the use of oxygen or air sparging to enhance natural degradation of the contaminant.

On February 10, 2005, Applied Engineering and Geology, Inc. (AEG) submitted a proposal to evaluate remedial options. In addition, AEG proposed completion of a "Seasonal Kendall" trend analysis for groundwater beneath the site. The workplan is accepted with the following comments:

- A Seasonal Kendal trend analysis has already been completed by this office. No statistically significant declining trend was found in either MW-1 or combined results from MW-1 and MW-4.
- Please prescreen potential remedial technologies. Each technology should be evaluated based upon 1) effectiveness, 2) implementability, and 3) cost.
- After prescreening, pick the best two or three technologies for further evaluation.
 Further evaluation may include an actual pilot study or may be the collection of additional data such as additional analysis of groundwater for indications of biodegradation.

Dorothy Noyes Alice Noyes Befty Van Meter March 28, 2005 Page 2

Please call if you have any questions (916) 875-8467.

Sincerely,

Laura S. (Marshall) McLean, R.G.

Hazardous Materials Division

Site Assessment and Mitigation Unit

c: Kathy Amaru – CVRWQCB Stan Walker - AEG

W:\DATA\MARSHALL\1200 | ST\WP3.DOC

Main Identity

From:

"McLean. Laura" < McLeanL@saccounty.net>

To:

"Applied Engineering and Geology, Inc." <aeg@psyber.com> >

Sent: Subject: Thursday, April 14, 2005 3:09 PM RE: Discount Tire Additional Testing

Please include additional proposed analyses as discussed below in your next quarterly moinotring event.

Laura S. Marshall-McLean, R.G. Site Assessment and Mitigation Section SCEMD-WP 8475 Jackson Road, Suite 230 Sacramento, CA 95826 (916)875-8467

From: Applied Engineering and Geology, Inc. [mailto:aeg@psyber.com]

Sent: Thursday, April 14, 2005 10:01 AM

To: McLean. Laura

Subject: Discount Tire Additional Testing

Laura McLean,

Per our phone conversation on April 13, 2005, AEG would like to request additional analytical tests be performed during the second quarter sampling event.

As outlined in AEG's Quarterly Monitoring Report, Fourth Quarter 2004, Status of Request for Closure, and Evaluation of Remedial Options Workplan, dated January 31, 2005, AEG would like to additionally analyze all wells for biological indicators and aerobic bacterial plate counts.

Thank you,

Applied Engineering and Geology, Inc.

Ernie Schofield 916.645.6014

This email and any attachments thereto may contain private, confidential, and privileged material for the sole use of the intended recipient. Any review, copying, or distribution of this email (or any attachments thereto) by other than the County of Sacramento or the intended recipient is strictly prohibited.

If you are not the intended recipient, please contact the sender immediately and permanently delete the original and any copies of this email and any attachments thereto.

Main Identity

From:

"Applied Engineering and Geology, Inc." <aeg@psyber.com>

To:

<mcleanl@saccounty.net>

Sent:

Tuesday, July 12, 2005 1:48 PM

Attach:

43429withsubs.pdf

Subject:

Discount Tire - Analytical

Laura,

Per our phone conversation, attached is the Second Quarter 2005 analytical, which includes the biological indicator and plate count results. Additionally, the Site is having the Third Quarter sample collected today, July 12, 2005, and those results should be available in about ten days.

Thank you for reviewing the Site for Closure resubmittal. If you have any questions, please contact me at your convenience.

Regards,

Applied Engineering and Geology, Inc.

Ernie

Date: 5/3/2005

Stan Walker Applied Engineering & Geology, Inc. P. O. Box 247 Lincoln, CA 95648

Subject: 4 Water Samples Project Name: Discount Tire

Project Number:

Dear Mr. Walker,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed.

Kiff Analytical is certified by the State of California (# 2236). If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Date: 5/3/2005

Subject:

4 Water Samples

Project Name :

Discount Tire

Project Number:

Case Narrative

The Method Reporting Limit for TPH as Diesel is increased due to interference from Gasoline-Range Hydrocarbons for samples MW-1, MW-2 and MW-4.

Approved By

Joe Kiff

Date: 5/3/2005

Project Name: Discount Tire

Project Number:

Sample: MW-1

Matrix: Water

Lab Number: 43429-01

Sample Date :4/26/2005

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
TPH as Diesel	< 1500	1500	ug/L	M EPA 8015	4/30/2005
Octacosane (Diesel Surrogate)	101		% Recovery	M EPA 8015	4/30/2005

Sample: MW-2

Matrix : Water

Lab Number: 43429-02

Sample Date :4/26/2005

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
TPH as Diesel	< 200	200	ug/L	M EPA 8015	4/30/2005
Octacosane (Diesel Surrogate)	104		% Recovery	M EPA 8015	4/30/2005

Sample: MW-3

Matrix: Water

Lab Number: 43429-03

Sample Date :4/26/2005	Measured	Method Reporting		Analysis	Date
Parameter	Value	Limit	Units	Method	Analyzed
TPH as Diesel	< 50	50	ug/L	M EPA 8015	4/30/2005
Octacosane (Diesel Surrogate)	105		% Recovery	M EPA 8015	4/30/2005

Approved By:

Date: 5/3/2005

Project Name: Discount Tire

Project Number:

Sample: MW-4

Matrix: Water

Lab Number: 43429-04

Sample Date :4/26/2005

Sample Date .4/20/2003	Measured	Method Reporting		Analysis	Date
Parameter	Value	Reporting Limit	Units	Method	<u>Analyzed</u>
TPH as Diesel	< 300	300	ug/L	M EPA 8015	4/30/2005
Octacosane (Diesel Surrogate)	103		% Recovery	M EPA 8015	4/30/2005

Approved By:

loe Kiff

Date: 5/3/2005

Sample: MW-1

Project Name:

Discount Tire

Project Number:

Lab Number: 43429-01

Date Analyzed: 4/28/2005, 4/27/2005

Matrix: Water

Sample Date :4/26/2005

Analysis Method: EPA 8260B

Deremeter	Measure Value	ed 1 MRL	Units	Parameter	Measured 1 Value MRL	Units
Parameter	< 0.50	0.50	ug/L	Toluene - d8 (Surr)	93.5	% Recovery
Benzene	< 0.50 < 0.50	0.50	ug/L ug/L	4-Bromofluorobenzene (Surr)	95.4	% Recovery
Toluene		0.50	ug/L ug/L	Dibromofluoromethane (Surr)	94.0	% Recovery
Ethylbenzene	2.3	0.50	-	1,2-Dichloroethane-d4 (Surr)	91.6	% Recovery
Total Xylenes	0.86	0.50	ug/L	112 2101101000110110 01 (00.17)		•
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L			
TPH as Gasoline	4000	100	ug/L			
Chloromethane	< 0.50	0.50	ug/l			
Vinyl Chloride	< 0.50	0.50	ug/L			
Bromomethane	< 20	20	ug/L			
Chloroethane	< 0.50	0.50	ug/L			
Trichlorofluoromethane	< 0.50	0.50	ug/L			
1,1-Dichloroethene	< 0.50	0.50	ug/L			
Methylene Chloride	< 5.0	5.0	ug/L			
trans-1,2-Dichloroethene	< 0.50	0.50	ug/L			
1,1-Dichloroethane	< 0.50	0.50	ug/L			
cis-1,2-Dichloroethene	< 0.50	0.50	ug/L			
Chloroform	< 0.50	0.50	ug/L			
1,1,1-Trichloroethane	< 0.50	0.50	ug/L			
1,2-Dichloroethane	< 0.50	0.50	ug/L			
Carbon Tetrachloride	< 0.50	0.50	ug/L			
Trichloroethene	< 0.50	0.50	ug/L			
1,2-Dichloropropane	< 0.50	0.50	ug/L			
Bromodichloromethane	< 0.50	0.50	ug/L			
cis-1,3-Dichloropropene	< 0.50	0.50	ug/L			
trans-1,3-Dichloropropene	< 0.50	0.50	ug/L			
1,1,2-Trichloroethane	< 0.50	0.50	ug/L			
Tetrachloroethene	< 0.50	0.50	ug/L			
Dibromochloromethane	< 0.50	0.50	ug/L			
Chlorobenzene	< 0.50	0.50	ug/L			
Bromoform	< 0.50	0.50	ug/L			
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ug/L			
1,3-Dichlorobenzene	< 0.50	0.50	ug/L			
1,4-Dichlorobenzene	< 0.50	0.50	ug/L			
1,2-Dichlorobenzene	< 0.50	0.50	ug/L			
1,2-Dibromoethane	< 0.50	0.50	ug/L			

1) MRL = Method reporting limit

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Date: 5/3/2005

Sample: MW-2

Project Name:

Discount Tire

Project Number:

Lab Number: 43429-02

Date Analyzed: 4/27/2005

Matrix: Water

Sample Date :4/26/2005

Analysis Method: EPA 8260B

	Measure			Danasakan	Measure	ed 1 MRL	Units
Parameter	Value	MRL	Units	Parameter	Value	MIXE	% Recovery
Benzene	< 0.50	0.50	ug/L	Toluene - d8 (Surr)	101		-
Toluene	< 0.50	0.50	ug/L	4-Bromofluorobenzene (Surr)	96.1		% Recovery
Ethylbenzene	< 0.50	0.50	ug/L	Dibromofluoromethane (Surr)	104		% Recovery
Total Xylenes	< 0.50	0.50	ug/L	1,2-Dichloroethane-d4 (Suπ)	102		% Recovery
Methyl-t-butyl ether (MTBE)	0.75	0.50	ug/L				
TPH as Gasoline	360	50	ug/L				
Chloromethane	< 0.50	0.50	ug/L				
Vinyl Chloride	< 0.50	0.50	ug/L				
Bromomethane	< 20	20	ug/L				
Chloroethane	< 0.50	0.50	ug/L				
Trichlorofluoromethane	< 0.50	0.50	ug/L				
1,1-Dichloroethene	< 0.50	0.50	ug/L				
Methylene Chloride	< 5.0	5.0	ug/L	•			
trans-1,2-Dichloroethene	< 0.50	0.50	ug/L				
1,1-Dichloroethane	< 0.50	0.50	ug/L				
cis-1,2-Dichloroethene	1.0	0.50	ug/L				
Chloroform	< 0.50	0.50	ug/L				
1,1,1-Trichloroethane	< 0.50	0.50	ug/L				
1,2-Dichloroethane	< 0.50	0.50	ug/L				
Carbon Tetrachloride	< 0.50	0.50	ug/L				
Trichloroethene	1.7	0.50	ug/L				
1,2-Dichloropropane	< 0.50	0.50	ug/L				
Bromodichloromethane	< 0.50	0.50	ug/L				
cis-1,3-Dichloropropene	< 0.50	0.50	ug/L				
trans-1,3-Dichloropropene	< 0.50	0.50	ug/L				
1,1,2-Trichloroethane	< 0.50	0.50	ug/L				
Tetrachloroethene	< 0.50	0.50	ug/L				
Dibromochloromethane	< 0.50	0.50	ug/L				
Chlorobenzene	< 0.50	0.50	ug/L				
Bromoform	< 0.50	0.50	ug/L				
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ug/L				
1,3-Dichlorobenzene	< 0.50	0.50	ug/L				
1,4-Dichlorobenzene	< 0.50	0.50	ug/L				
1,2-Dichlorobenzene	< 0.50	0.50	ug/L				
1,2-Dibromoethane	< 0.50	0.50	ug/L				

1) MRL = Method reporting limit

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Date: 5/3/2005

Sample: MW-3

Project Name:

Discount Tire

Project Number:

Lab Number: 43429-03

Date Analyzed: 4/27/2005

Matrix: Water

Sample Date :4/26/2005

Analysis Method: EPA 8260B

	Measure	ed 1			Measur	ed1	
Parameter	Value	MRL	Units	Parameter	Value	MRL	Units
Benzene	< 0.50	0.50	ug/L	Toluene - d8 (Surr)	98.6		% Recovery
Toluene	< 0.50	0.50	ug/L	4-Bromofluorobenzene (Surr)	94.4		% Recovery
Ethylbenzene	< 0.50	0.50	ug/L	Dibromofluoromethane (Surr)	106		% Recovery
Total Xylenes	< 0.50	0.50	ug/L	1,2-Dichloroethane-d4 (Surr)	105		% Recovery
Methyl-t-butyl ether (MTBE)	0.93	0.50	ug/L				
TPH as Gasoline	< 50	50	ug/L				
Chloromethane	< 0.50	0.50	ug/L				
Vinyl Chloride	< 0.50	0.50	ug/L				
Bromomethane	< 20	20	ug/L				
Chloroethane	< 0.50	0.50	ug/L				
Trichlorofluoromethane	< 0.50	0.50	ug/L				
1,1-Dichloroethene	< 0.50	0.50	ug/L				
Methylene Chloride	< 5.0	5.0	ug/L				
trans-1,2-Dichloroethene	< 0.50	0.50	ug/L				
1,1-Dichloroethane	< 0.50	0.50	ug/L				
cis-1,2-Dichloroethene	< 0.50	0.50	ug/L				•
Chloroform	< 0.50	0.50	ug/L				
1,1,1-Trichloroethane	< 0.50	0.50	ug/L				
1,2-Dichloroethane	< 0.50	0.50	ug/L				
Carbon Tetrachloride	< 0.50	0.50	ug/L				
Trichloroethene	2.8	0.50	ug/L				
1,2-Dichloropropane	< 0.50	0.50	ug/L				
Bromodichloromethane	< 0.50	0.50	ug/L				
cis-1,3-Dichloropropene	< 0.50	0.50	ug/L				
trans-1,3-Dichloropropene	< 0.50	0.50	ug/L				
1,1,2-Trichloroethane	< 0.50	0.50	ug/L				
Tetrachloroethene	< 0.50	0.50	ug/L				
Dibromochloromethane	< 0.50	0.50	ug/L				
Chlorobenzene	< 0.50	0.50	ug/L				
Bromoform	< 0.50	0.50	ug/L				
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ug/L				
1,3-Dichlorobenzene	< 0.50	0.50	ug/L				
1,4-Dichlorobenzene	< 0.50	0.50	ug/L				
1,2-Dichlorobenzene	< 0.50	0.50	ug/L				
1,2-Dibromoethane	< 0.50	0.50	ug/L				

1) MRL = Method reporting limit

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Date: 5/3/2005

Sample: MW-4

Project Name:

Discount Tire

Project Number:

Lab Number : 43429-04

Date Analyzed: 4/27/2005, 4/28/2005

Matrix: Water

Sample Date :4/26/2005

Analysis Method: EPA 8260B

Parameter	Measure Value	ed 1 MRL	Units	Parameter	Measured 1 Value MRL	Units
Benzene	< 0.50	0.50	ug/L	Toluene - d8 (Surr)	103	% Recovery
Toluene	< 0.50	0.50	ug/L	4-Bromofluorobenzene (Surr)	98.2	% Recovery
Ethylbenzene	< 0.50	0.50	ug/L	Dibromofluoromethane (Surr)	104	% Recovery
Total Xylenes	< 0.50	0.50	ug/L	1,2-Dichloroethane-d4 (Surr)	100	% Recovery
Methyl-t-butyl ether (MTBE)	0.64	0.50	ug/L			
TPH as Gasoline	1100	50	ug/L			
Chloromethane	< 0.50	0.50	ug/L			
Vinyl Chloride	< 0.50	0.50	ug/L			
Bromomethane	< 20	20	ug/L			
Chloroethane	< 0.50	0.50	ug/L			
Trichlorofluoromethane	< 0.50	0.50	ug/L			
1,1-Dichloroethene	< 0.50	0.50	ug/L			
Methylene Chloride	< 5.0	5.0	ug/L			
trans-1,2-Dichloroethene	< 0.50	0.50	ug/L			
1,1-Dichloroethane	< 0.50	0.50	ug/L			
cis-1,2-Dichloroethene	0.80	0.50	ug/L			
Chloroform	< 0.50	0.50	ug/L			
1,1,1-Trichloroethane	< 0.50	0.50	ug/L			
1,2-Dichloroethane	< 0.50	0.50	ug/L			
Carbon Tetrachloride	< 0.50	0.50	ug/L			
Trichloroethene	< 0.50	0.50	ug/L			
1,2-Dichloropropane	< 0.50	0.50	ug/L			
Bromodichloromethane	< 0.50	0.50	ug/L			
cis-1,3-Dichloropropene	< 0.50	0.50	ug/L			
trans-1,3-Dichloropropene	< 0.50	0.50	ug/L			
1,1,2-Trichloroethane	< 0.50	0.50	ug/L			
Tetrachloroethene	< 0.50	0.50	ug/L			
Dibromochloromethane	< 0.50	0.50	ug/L			
Chlorobenzene	< 0.50	0.50	ug/L			
Bromoform	< 0.50	0.50	ug/L			
1,1,2,2-Tetrachloroethane	< 0.50	0.50	ug/L			
1,3-Dichlorobenzene	< 0.50	0.50	ug/L			
1,4-Dichlorobenzene	< 0.50	0.50	ug/L			
1,2-Dichlorobenzene	< 0.50	0.50	ug/L			
1,2-Dibromoethane	< 0.50	0.50	ug/L			

1) MRL = Method reporting limit

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Date: 5/3/2005

QC Report : Method Blank Data

Project Name: Discount Tire Project Number:

		T. C. Sterney						Method			
	Measured	Reporting		Analysis	Date	Domerer	Measured	Reporting I imit	g Units	Analysis Method	Date Analyzed
Parameter	Value		Onits	Memod	Allalyzeu		0 60	0.50	1,011	EPA 8260B	4/27/2005
TPH as Diesel	× 50	20	ug/L	M EPA 8015	4/29/2005	1,3-Dichlordbenzerie	9 9		j ;	2022 V 12	4/27/2005
Octacosane (Diesel Surrogate)	97.6		%	M EPA 8015	4/29/2005	1,4-Dichlorobenzene	0.50 0.50 0.50	0.50	מלר מלר	EPA 8260B	4/27/2005
t	<u>د</u> د	6	100	EPA R260B	4/27/2005	1,2-Dibromoethane	< 0.50	0.50	ng/L	EPA 8260B	4/27/2005
Benzene	9 9	2 62) (C)	EPA 8260B	4/27/2005	Toluene - d8 (Surr)	98.4		%	EPA 8260B	4/27/2005
euenol	200	9 6	1 2	EPA 8260B	4/27/2005	4-Bromofluorobenzene (Surr)	93.5		%	EPA 8260B	4/27/2005
Ethylbenzene	0.30	0.50		EPA 8260B	4/27/2005	Dibromofluoromethane (Surt)	104		%	EPA 8260B	4/27/2005
iotal Aylenes Mathul fibritul other (MTRE)	050	0.50	ug/L	EPA 8260B	4/27/2005	1,2-Dichloroethane-d4 (Surt)	102		%	EPA 8260B	4/27/2005
This Cooling	- CE >	Ę.	- WI	EPA 8260B	4/27/2005	1	6	6		dosco A da	4000000
IPH as Gasonne	3,	3	i i	i		Benzene	0.50	0.50	ng/L	ELY ozono	4120/2003
Chloromethane	< 0.50	0.50	ng/L	EPA 8260B	4/27/2005	Toluene	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005
Vinyl Chloride	< 0.50	0.50	ng/L	EPA 8260B	4/27/2005	Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	4/28/2005
Bromomethane	< 20	20	ng/L	EPA 8260B	4/27/2005	Total Xylenes	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005
Chloroethane	< 0.50	0.50	ng/L	EPA 8260B	4/27/2005	Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	4/28/2005
Trichlorofluoromethane	< 0.50	0.50	ng/L	EPA 8260B	4/27/2005		, i	Ğ	, ,	EPA 8260B	4/28/2005
1.1-Dichloroethene	< 0.50	0.50	ng/L	EPA 8260B	4/27/2005	LPH as Gasoline	06.5	2	j j		1000000
Methylene Chloride	< 5.0	5.0	ng/L	EPA 8260B	4/27/2005	Chloromethane	< 0.50	0.50	ug/L	EPA 8260B	4/28/2005
trans-1.2-Dichloroethene	< 0.50	0.50	ng/L	EPA 8260B	4/27/2005	Vinyl Chloride	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005
1 1-Dichlorosthane	< 0.50	0,50	ng/L	EPA 8260B	4/27/2005	Bromomethane	v 20	20	rîg/L	EPA 8260B	4/28/2005
cie. 1.2. Dichloroethene	< 0,50	0.50	ug/L	EPA 8260B	4/27/2005	Chloroethane	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005
Chloroform	< 0.50	0.50	ug/L	EPA 8260B	4/27/2005	Trichlorofluoromethane	< 0.50	0.50	ug/L	EPA 8260B	4/28/2005
Cilio Collina 4 4 4 Tackloroethere	< 0.50	0.50	na/l	EPA 8260B	4/27/2005	1,1-Dichloroethene	< 0.50	0.50	ug/L	EPA 8260B	4/28/2005
1, 1, 1- Historicano	0.50	0.50	Į (Dit	EPA 8260B	4/27/2005	Methylene Chloride	< 5.0	5.0	ng/L	EPA 8260B	4/28/2005
Carbon Totrophonido	< 0.50	0.50	10/J	EPA 8260B	4/27/2005	trans-1,2-Dichloroethene	< 0.50	0.50	ug/L	EPA 8260B	4/28/2005
Tack continued	05.0 >	0.50	ng/L	EPA 8260B	4/27/2005	1,1-Dichloroethane	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005
4.0. Dichomorphia	< 0.50	0.50	na/L	EPA 8260B	4/27/2005	cis-1,2-Dichloroethene	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005
Demodish completes	< 0.50	0.50	na/L	EPA 8260B	4/27/2005	Chloroform	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005
oin 12 Dichlorongonene	0.50 >	0.50	ua/L	EPA 8260B	4/27/2005	1,1,1-Trichloroethane	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005
tone 1.9 Dirkbroomene	050 >	0.50	no/l	EPA 8260B	4/27/2005	1,2-Dichloroethane	< 0.50	0,50	ug/L	EPA 8260B	4/28/2005
	0.50	0.50) Just	FPA 8260B	4/27/2005	Carbon Tetrachloride	< 0.50	0.50	ug/L	EPA 8260B	4/28/2005
Total Control of the	05.0 >	0.50	, J	EPA 8260B	4/27/2005	Trichloroethene	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005
Distriction	020 >	0.50	ng/L	EPA 8260B	4/27/2005	1,2-Dichloropropane	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005
	0 C	0.50	[/oil	EPA 8260B	4/27/2005	Bromodichloromethane	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005
Chloropenzene	0.00	5.50	1 /01	EPA 8260B	4/27/2005	cis-1,3-Dichloropropene	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005
1.1.2.Tefrachloroethane	< 0.50	0.50	ua/L	EPA 8260B	4/27/2005	trans-1,3-Dichloropropene	< 0.50	0.50	ug/L	EPA 8260B	4/28/2005
1, 1,4,42-1 50,500,000,000,000	1		,								

Approved By: Joel Kiff

KIFF ANALYTICAL, LLC

Date: 5/3/2005

Date Analyzed

Analysis Method

Method Reporting Limit U

Measured Value

Project Name: Discount Tire

QC Report: Method Blank Data

Project Number:

		Method				
	Measured	Reporting	-	Analysis	Date	
Parameter	Value	Limit	Units	Method	Analyzed	
1.1.2-Trichloroethane	< 0.50	0.50	ug/L	EPA 8260B	4/28/2005	
Tetrachloroethene	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005	
Dibromochloromethane	< 0.50	0.50	ug/L	EPA 8260B	4/28/2005	
Chlorobenzene	< 0.50	0.50	ug/L	EPA 8260B	4/28/2005	
Bromoform	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005	
1.1.2.2-Tetrachloroethane	< 0.50	0.50	ug/L	EPA 8260B	4/28/2005	
1.3-Dichlorobenzene	< 0.50	0.50	ug/L	EPA 8260B	4/28/2005	
1.4-Dichlorobenzene	< 0.50	0.50	ug/L	EPA 8260B	4/28/2005	
1.2-Dichlorobenzene	< 0.50	0.50	ng/L	EPA 8260B	4/28/2005	
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	4/28/2005	
Toluene - d8 (Sur.)	102		%	EPA 8260B	4/28/2005	
4-Bromofluorobenzene (Surr)	92.7		%	EPA 8260B	4/28/2005	
Dibromofluoromethane (Surr)	100		%	EPA 8260B	4/28/2005	
1,2-Dichloroethane-d4 (Surr)	101		%	EPA 8260B	4/28/2005	

Approved By: Joel Kiff

KIFF ANALYTICAL, LLC

Date: 5/3/2005

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Name: Discount Tire

Project Number:

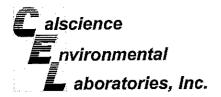
Relative Percent Diff.		
8822	25	25 25 25 25 25 25 25 25 25 25
Spiked Sample e Percent it Recov. Limit	70-130	70-130 70-130 70-130 70-130 70-130 70-130
Relative Percent Diff.	4.09	1.29 2.22 7.82 1.92 3.69 6.48 1.11
Duplicate Spiked Sample F Percent F Recov.	107	107 105 99.5 103 98.1 94.2 96.8
Spiked Sample Percent Recov.	103	108 108 105 105 100 97.8 93.7
Date Analyzed	4/29/05	4/27/05 4/27/05 4/27/05 4/28/05 4/28/05 4/28/05
Analysis Method	M EPA 8015 4/29/05	EPA 8260B EPA 8260B EPA 8260B EPA 8260B EPA 8260B EPA 8260B EPA 8260B
Units	ng/L	ug/L ug/L ug/L ug/L ug/L
Duplicate Spiked Sample Value	1070	42.7 42.2 199 44.0 43.6 83.8 194 38.2
Spiked Sample Value	1030	43.2 43.1 215 44.8 45.0 86.3 196 37.5
Spike Dup. Level	1000	40.0 40.0 200 40.0 40.0 200 40.0
Spike Level	1000	40.0 40.0 40.0 40.0 40.0 40.0
Sample Spike Value Level	<50	<0.50<0.50<0.50<2.8 4.4 46 <0.50 <0.00
Spiked	Blank	43414-02 <0.50 43414-02 <0.50 43414-02 <5.0 ler 43414-02 2.8 43426-03 4.4 43426-03 46 43426-03 <5.0 ler 43426-03 <0.50
Parameter	TPH as Diesel	Benzene 43414-02 <0.50

Approved By: Joe

KIFF ANALYTICAL, LLC

Date: 5/3/2005

QC Report : Laboratory Control Sample (LCS)


Project Name: Discount Tire

Project Number:

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
Benzene	40.0	ng/L	EPA 8260B	4/27/05	103	70-130
Toluene	40.0	ng/L	EPA 8260B	4/27/05	103	70-130
Tert-Butanol	200	ng/L	EPA 8260B	4/27/05	104	70-130
Methyl-t-Butyl Ether	40.0	ug/L	EPA 8260B	4/27/05	103	70-130
Benzene	40.0	ng/L	EPA 8260B	4/28/05	98.3	70-130
Toluene	40.0	ug/L	EPA 8260B	4/28/05	101	70-130
Tert-Butanol	200	ng/L	EPA 8260B	4/28/05	92.0	70-130
Methyl-t-Butyl Ether	40.0	ug/L	EPA 8260B	4/28/05	96.1	70-130

Approved By: Joe Kiff

KIFF ANALYTICAL, LLC

May 03, 2005

Joel Kiff Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593

Subject:

Calscience Work Order No.:

: 05-04-1614

Client Reference:

Discount Tire

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 4/27/2005 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Program Manual, applicable standard operating procedures, and other related documentation. The original report of any subcontracted analysis is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Laboratories, Inc.

Stephen Nowak Project Manager

CA-ELAP ID: 1230

NELAP ID: 03220CA

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

Kiff Analytical 2795 2nd Street, Suite

2795 2nd Street, Suite 300 Davis, CA 95616-6593 Date Received:

Work Order No:

Preparation: Method:

Units:

04/27/05

05-04-1614

EPA 3005A Filt. EPA 200.7

mg/L

Project: Discount Tire

Page 1 of 2

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
MW-1			05-04-1	314-1	04/26/05	Aqueous	04/27/05	04/28/05	050427L10
Paramete <u>r</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>					
iron	4.30	0.10	1						
MW-2			05-04-1	614-2	04/26/05	Aqueous	04/27/05	04/28/05	050427L10
Parameter	Result	RL	<u>DF</u>	Qual					
Iron	ND	0.100	1						
MW-3			05-04-1	614-3	04/26/05	Aqueous	04/27/05	04/28/05	050427L10
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual					
Iron	ND	0.100	1					· · · · · · · · · · · · · · · · · · ·	
MW-4	encipies paleida La caste de la la la		05-04-1	614-4	04/26/05	Aqueous	04/27/05	04/28/05	050427∟10
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>					
Iron	0.837	0.100	1						

The Tropoli

DF - Dilution Factor ,

Qual - Qualifiers

Kiff Analytical

2795 2nd Street, Suite 300

Davis, CA 95616-6593

Date Received:

Work Order No:

Preparation:

Method: Units:

05-04-1614

EPA 3010A Total

EPA 200.7

04/27/05

mg/L

Project: Discount Tire

Page 2 of 2

Client Sample Number		···		ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
MW-1		i cyrnatafy Sirin i Gili	05-04-1	614-1	04/26/05	Aqueous	04/27/05	04/28/05	050427L10
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>					
Potassium	2.49	0.50	1						
MW-2			05-04-1	614-2	04/26/05	Aqueous	04/27/05	04/28/05	050427L10
Parameter	Result	RL	<u>DF</u>	Qual					
Potassium	3.84	0.50	1						
MW-3			05-04-1	614-3	04/26/05	Aqueous	04/27/05	04/28/05	050427L10
<u>Parameter</u>	Result	<u>R</u> L	<u>DF</u>	<u>Qual</u>					
Potassium	3.87	0.50	1						
MW-4			05-04-1	614-4	04/26/05	Aqueous	04/27/05	04/28/05	050427L10
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>					
Potassium	2.14	0.50	1						
Method Blank			097-01-	012-1,905	NA	Aqueous	04/27/05	04/28/05	050427L10
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>		<u>Re</u>	sult RL	DF Qual
Iron	ND	0.100	1		Potassium		NE	0.500	1

DF - Dilution Factor ,

Qual - Qualifiers

Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593 Date Received: Work Order No:

04/27/05 05-04**-**1614

Project: Discount Tire

Page 1 of 2

Client Sample Number			ab Sample Number	Da Colle	cted	Matrix	AND THE RESERVE TO THE PROPERTY.	- INTERNATIONAL MARKET
MW-1		05-0)4-1614-1	04/2	6/05 A	queous		
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	Date Prepared	Date Analyzed	Method
Nitrite (as N)	ND	0.10	1		mg/L	N/A	04/28/05	EPA 300.0
Nitrate (as N)	ND	0.10	1		mg/L	N/A	04/28/05	EPA 300.0
o-Phosphate (as P)	ND	0.10	1		mg/L	N/A	04/28/05	EPA 300.0
Sulfate	3.4	1.0	1		mg/L	N/A	04/28/05	EPA 300.0
Ammonia	ND	0.10	1		mg/L	N/A	04/28/05	EPA 350.2
Fotal Kjeldahl Nitrogen	0.56	0.50	1		mg/L	N/A	04/29/05	EPA 351.3
Alkalinity, Total (as CaCO3)	530	5.0	1		mg/L	N/A	04/28/05	SM 2320B
Iron (II)	4.3	0.1	i		mg/L	N/A	04/27/05	SM3500-FeD

Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	Date Prepared	Date Analyzed	<u>Method</u>
litrite (as N)	ND	0.10	1		mg/L	N/A	04/28/05	EPA 300.0
litrate (as N)	1.5	0.1	1		mg/L	N/A	04/28/05	EPA 300.0
-Phosphate (as P)	ND	0.10	1		mg/L	N/A	04/28/05	EPA 300.0
Sulfate	57	10	10		mg/L	N/A	05/01/05	EPA 300.0
mmonia	ND	0.10	1		mg/L	N/A	04/28/05	EPA 350.2
otal Kjeldahl Nitrogen	ND	0.50	1		mg/L	N/A	04/29/05	EPA 351.3
	400	5.0	1		mg/L	N/A	04/28/05	SM 2320B
Alkalinity, Total (as CaCO3) Iron (II)	ND	0.10	1		mg/L	N/A	04/27/05	SM3500-FeD

Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>	Date Prepared	<u>Date Analyzed</u>	<u>Method</u>
litrite (as N)	ND	0.10	1		mg/L	N/A	04/28/05	EPA 300.0
litrate (as N)	4.1	0.1	1		mg/L	N/A	04/28/05	EPA 300.0
• • • • • • • • • • • • • • • • • • • •	0.11	0.10	1		mg/L	N/A	04/28/05	EPA 300.0
Phosphate (as P)	57	20	20		mg/L	N/A	05/01/05	EPA 300.0
ulfate	ND	0.10	1		mg/L	N/A	04/28/05	EPA 350.2
mmonia	ND ND	0.50	4		mg/L	N/A	04/29/05	EPA 351.3
otal Kjeldahl Nitrogen			4		mg/L	N/A	04/28/05	SM 2320B
Alkalinity, Total (as CaCO3) ron (II)	360 ND	5.0 0.10	4		mg/L	N/A	04/27/05	SM3500-FeD

RL - Reporting Limit

DF - Dilution Factor

Qual - Qualifier

Kiff Analytical 2795 2nd Street, Suite 300 Date Received: Work Order No:

04/27/05 05-04-1614

2795 2nd Street, Suite 30 Davis, CA 95616-6593

Project: Discount Tire

Page 2 of 2

Client Sample Number	4.45 (16 7.45 (16 16 16 16 16 16 16 16 16 16 16 16 16 1	nciscement most	ab Sample Number 04-1614-4	Date Collect 04/26	ted	Matrix queous		
Parameter	<u>Result</u>	RL	<u>DF</u>	Qual	<u>Units</u>	Date Prepared	Date Analyzed	<u>Method</u>
Nitrite (as N) Nitrate (as N) o-Phosphate (as P) Sulfate Ammonia Total Kjeldah! Nitrogen Alkalinity, Total (as CaCO3) Iron (II)	ND ND ND 16 ND ND 460 2.0	0.10 0.10 0.10 2 0.10 0.50 5.0 0.1	1 1 2 1 1 1		mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	N/A N/A N/A N/A N/A N/A N/A	04/28/05 04/28/05 04/28/05 05/01/05 04/28/05 04/29/05 04/28/05 04/27/05	EPA 300.0 EPA 300.0 EPA 300.0 EPA 300.0 EPA 350.2 EPA 351.3 SM 2320B SM3500-FeD

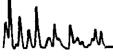
arameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	Date Prepared	Date Analyzed	<u>Method</u>
Nitrite (as N)	ND	0.10	1		mg/L	N/A	04/27/05	EPA 300.0
litrate (as N)	ND	0.10	1		mg/L	N/A	04/27/05	EPA 300.0
-Phosphate (as P)	ND	0.10	1		mg/L	N/A	04/27/05	EPA 300.0
ulfate	ND	1.0	1		mg/L	N/A	04/27/05	EPA 300.0
	ND	0.10	1		mg/L	N/A	04/28/05	EPA 350.2
Ammonia Fotal Kjeldahl Nitrogen	ND	0.50	1		mg/L	N/A	04/29/05	EPA 351.3
ron (II)	ND	0.10	1		mg/L	N/A	04/27/05	SM3500-FeD

RL - Reporting Limit

DF - Dilution Factor ,

Oual - Oualifier

Quality Control - Spike/Spike Duplicate


Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593 Date Received: Work Order No: Preparation: Method: 04/27/05 05-04-1614 EPA 3010A Total EPA 200.7

Project Discount Tire

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
Experience of the second secon	Aqueou	s CP 3300	04/27/05		04/28/05	050427S10
<u>Parameter</u>	MS %REC	MSD %REC	%REC_CL	<u>RPD</u>	RPD CI	<u>Qualifiers</u>
Iron Potassium	4X 109	4X 108	80-120 80-120	4X 1	0-20 0-20	Q

RPD - Relative Percent Difference ,

CL - Control Limit

Quality Control - Spike/Spike Duplicate

Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593 Date Received: Work Order No:

N/A 05-04-1614

Matrix: Aqueous										1,760 1, 31
<u>Parameter</u>	<u>Method</u>	Quality Control Sample ID	<u>Date</u> <u>Analyzed</u>	<u>Date</u> Extracted	MS% REC	MSD % REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Nitrite (as N)	EPA 300.0	05-04-1622-1	04/28/05	N/A	100	101	68-122	2	0-8	
Nitrate (as N)	EPA 300.0	05-04-1622-1	04/28/05	N/A	100	100	58-142	0	0-6	
o-Phosphate (as P)	EPA 300.0	05-04-1622-1	04/28/05	N/A	105	109	63-141	4	0-12	
Sulfate	EPA 300.0	05-04-1622-1	04/28/05	N/A	114	114	49-133	0	0-3	
Iron (II)	SM3500-FeD	MW-3	04/27/05	N/A	94	97	70-130	3	0-25	

Quality Control - Duplicate

Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593 Date Received: Work Order No:

N/A 05-04-1614

Matrix: Aqueous								
Parameter	Method	QC Sample ID	Date Analyzed	Sample Conc	DUP Conc	RPD	RPD CL	Qualifiers
Alkalinity, Total (as CaCO3) Ammonia Total Kjeldahl Nitrogen	SM 2320B EPA 350.2 EPA 351.3	MW-4 05-04-1352-15 05-04-1632-1	04/28/05 04/28/05 04/29/05	460 18 8 4 00	460 18 8300	0 3 2	0-25 0-25 0-25	

Quality Control - LCS/LCS Duplicate

Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593 Date Received: Work Order No: Preparation: Method: N/A 05-04-1614 EPA 3010A Total EPA 200.7

Quality Control Sample ID	Matrix_	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Ba Number	tch
097-01-012-1,905	Aqueous	ICP 3300	D4/27/05	04/28/05	050427L10	
<u>Parameter</u>	LCS %	REC LCSD	%REC %REC	CCL RPI	<u>RPD CL</u>	Qualifiers
Iron Potassium	104 96	104 99	85- ⁻ 85-		0-20 0-20	

Quality Control - LCS/LCS Duplicate

Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593 Date Received: Work Order No:

N/A 05-04-1614

Matrix: Aqueous										
<u>Parameter</u>	<u>Method</u>	Quality Control Sample ID	<u>Date</u> Extracted	<u>Date</u> <u>Analyzed</u>	LCS % REC	LCSD % REC	%REC CL	<u>RPD</u>	RPD CL	Qual
Nitrite (as N)	EPA 300.0 EPA 300.0	099-05-118-2,694 099-05-118-2,694	N/A N/A	04/27/05 04/27/05	99 99	100 99	73-115 87-111	1 0	0-26 0-12	
Nitrate (as N) o-Phosphate (as P) Sulfate	EPA 300.0 EPA 300.0	099-05-118-2,694 099-05-118-2,694	N/A N/A	04/27/05 04/27/05	108 100	108 100	78-126 89-107	0 0	0-22 0-13	

nvironmental Quality Control - Laboratory Control Sample

Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593

aboratories, Inc.

Date Received: Work Order No:

N/A 05-04-1614

Project: Discount Tire

Matrix : Aqueous									
<u>Parameter</u>	<u>Method</u>	Quality Control Sample ID	<u>Date</u> <u>Analyzed</u>	<u>Date</u> Extracted	Conc Added	Conc Recovered	LCS %Rec	%Rec CL	<u>Qualifiers</u>
Iron (II)	SM3500-FeD	099-05-111-1,909	04/27/05	N/A	1.0	0.97	97	80-120	

RPD - Relative Percent Difference,

CL - Control Limit


Glossary of Terms and Qualifiers

Work Order Number: 05-04-1614

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike or Matrix Spike Duplicate compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

		7.6	9705 Second Street	reet. Suit	Suife 300		al Sc	ience	Cal Science Environmental	nemen	la la			<u> </u>			
		, B	2733 Second Service Care Davis. CA 95616	<u>-</u>			~	440 Li	7440 Lincoln Way	Nay							
		ניבי (Lab: 530,297,4800	900			Sarde	an Gro	Garden Grove, CA	92841		١	(4)		д ф	<u>-</u>	. 🔻
ANALYTICAL LLC	CAL LLC	5	A. 000-01-1	3	١		5	114-693-5494	424.		OR CE	9					1,
Project Contact (Hardcopy or PDF to):	r PDF to):	٥J	Geotracker COELT EDD REPORT?	OELT		S	RT?	ರ —⊤	Chain-of-Custody Record	f-Cust	ody K	Scord	and Analysis Request	Maly	보 SIS	sanba	7.
Joel Kiff	Kiff	$\overline{\ \ }$	צ	_X_YES	l	9 .									\mid		
Company/Address: Viff Analytical 11 C		й	Sampling Company Log Code:	any Log (ode:		AEGI	T		Analy	Analysis Request	uest				Dat Due	
Г	Tay No.] <u>e</u>	Clobal ID:	l	j			(┢				_	_			
Phone No.:	FAX No.:	<u> </u>	ona io.) -	T0606793641	3641		2.03	LKN	(8		(0.0		(
Project Number:	P.O. No.:		EDF Deliverable to (Email Address)	to (Emai	Addre	:(5:		 		320		: (30		009	(7.(Дju
	43429	<u>.</u> ⊑	inbox@kiffanalytical.com	lytical.co	티			uəli I		Z V		etin. hate	(1	 3ev	007	00	0 6
Project Name:		ய்	mail address							NS)	((iosbļ	.00	NS)	<u>,</u>) u	ፘ 'የ	eU
Discount Tire		ij.	inbox@kiffanalytical.com	lytical.c	E		ļ	!N s		lity	0.0	 PP PP PP PP	Z)	านต	lro	S V	ds.
Project Address:	Sampling		Container	Pre	Preservative	Ve	Matrix			nils	0E)	ortin orth orth	เมท	nl a	рə	sM —	J 10
		,,						iuc	Kj∈		əti	90°	iss	sno	νlo		Э.
Sample		st es		O ²		SSO NE) JUE			etc	eilu	etent troge	eto	erro	sej		
Designation	Date Ti	Time ਦੌ	loq nA	žΗ	IOI	ΒN		IA IA	Τ		s	N N	<u>-</u>	<u> </u>	<u> </u>	 	
84147.4	4/26/05 13:02	02	5 2	2	×	2		<u>×</u>	×	×	×	×	×	×	×	\times	
WINE-I	A/26/05 12:05	ج ا		2	×	5	×	×	×	×	×	×	×	×	×	×	
IMVV-Z	71 00 00 7/4	3 ;		-	╀			×	×	×	×	×	×	×	×	×	
MW-3	4/26/05 11:35	왕	2 0	1	<u> </u>		<u> </u>	() -	╁	: >	>	,	>	>	>	>	
MW-4	4/26/05 12:34	45	5 2	2	×	5	×	<u> </u>	<	<u> </u>	<	<	-	~	<	<u> </u>	T
				-													
				 -					<u> </u>								_
		+		+	<u> </u>		F	-									
				+	#	+		<u> </u>	-	<u> </u>				-			
						-	-		-	<u> </u>							
		_		 			+	-	1					1	Ť		
Relinquished by:	WHAM KILL ON THE	Date 47/66	Time Received by	d by:			:		<u>æ</u>	Remarks:							
Relinquished by:	1 / / / / / /	ate	Time Received by:	d by:													
		\dashv		-							ļ						
Relinquished by:	_ X	Date Time	Time Received by		Laboratory:	3	3		<u>m</u>	Bill to:						:	
													i				

WORK ORDER #:

05-04-1614

Cooler	1	of	1

SAMPLE RECEIPT FORM

CLIENT: KIFF AMALYTICAL	DATE: 4-27-05
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. C Temperature blank.	LABORATORY (Other than Calscience Courier): ° C Temperature blank ° C IR thermometer Ambient temperature. Initial: WB
CUSTODY SEAL INTACT:	
Sample(s): Cooler: No (Not Intact	not Applicable (N/A): Initial:
SAMPLE CONDITION:	
Chain-Of-Custody document(s) received with samples Sample container label(s) consistent with custody papers Sample container(s) intact and good condition Correct containers for analyses requested Proper preservation noted on sample label(s) VOA vial(s) free of headspace Tedlar bag(s) free of condensation	
COMMENTS:	

Cyto Culture ENVIRONMENTAL BIOTECHNOLOGY CytoCulture International, Inc. 249 Tewksbury Avenue Pt. Richmond, CA 94801 USA

Kiff Analytical, LLC

Project Name: Discount Tire Project Manager: Joel Kiff

Address: 2795 Second Street, Suite 300

Davis, CA 95616

Tel: 530-297-4800 Fax: 530-297-4808 Email: inbox@kiffanalytical.com

Reporting date: May 2, 2005 CytoCulture lab login: 05-47 P.O. Number: 43429

Samples: Four water samples packed on ice were received 04/27/2005. The samples were stored at 4°C and assayed on the same day. Please see the attached chain of custody form.

AEROBIC Heterotrophic Bacteria Enumeration Assay

Analysis Request: Enumeration of aerobic total heterotrophic bacteria by method 9215A (HPC)/ Standard Methods 9215B modified.

Carbon Source for Total Heterotrophic Bacteria: Growth medium was prepared with standard methods total plate count agar (Difco) containing a wide range of carbon sources derived from yeast extract, tryptone, pancreatic digest of casein and glucose.

Protocol for Total Heterotrophic Bacteria: Sterile agar plates (100 x 15 mm) were prepared with minimal salts and 2.35% heterotrophic plate count agar at pH 6.8 without any other carbon source or nutrients added. Sets of triplicate plates were inoculated with 1.0 ml of sample at log dilutions 10⁻¹, 10⁻², and 10⁻³. The heterotrophic plates were counted after 3 days incubation at 30°C. The plate count data is reported as colony forming units (cfu) per milliliter (ml) of sample. Each enumeration value represents a statistical average of two of the four inoculating log dilutions assayed.

AEROBIC Total Heterotroph Bacteria Enumeration Results

Client Sample Number	Sample Date	Aerobic Total Hertertrophic (cfu/ml)	Target Hydrocarbons Tested
MW-1	04/26/05	4 x 10 ³	Gasoline/Diesel
MW-2	04/26/05	2×10^{3}	Gasoline/Diesel
MW-3	04/26/05	3 x 10 ³	Gasoline/Diesel
MW-4	04/26/05	3 x 10 ³	Gasoline/Diesel
Sterile Water	04/27/05	0	Gasoline/Diesel
Air Control	04/27/05	0	Gasoline/Diesel
Positive Control	04/27/05	8 x 10 ⁹	Gasoline/Diesel

Reporting Limit for enumeration data is 1.0×10^{1} cfu/ml.

A hydrocarbon-degrading bacteria positive control sample was run concurrently with each set of samples using a mixed flask culture of bacteria enriched from contaminated UST sites in Northern California.

CytoCulture is available on a consulting basis to assist in the interpretation of these data and their application to field bioremediation protocols.

Sharon Huang Laboratory Technician	Randall von Wedel, Ph.D. Principal Biochemist

9 8 40-For Lab Use Only 70 Chain-of-Custody Record and Analysis Request STD STD STD STD A STD STD STD STD STD **TAT** 13 HL 34 HL 48 HL 15 HL 1 MK 5 MK <u>-</u> Lead (7421/239.2) TOTAL ____ W.E.T. __ **Analysis Request** × × Volatile Halocarbona (EPA 8260B) × × (1st) [Ind] (E0928 Aq3 Lead Scay. (1,2 DCA & 1,2 EDB - 8260B) Oxygenates (8260B) 2 Oxygenates (8260B) Lab No. 43429 Oxygenates/TPH Gas/BTEX (8260B) Oxygenates/TPH Gas/BTEX (8260B) Remarks; (GrosM) IIO rotoM ss H91 A BIII to: (CL08M) leseid as H91 × × × × × (8290B) BELY/MTBE (8260B) ЯIA Matrix <u>≗</u> TIOS **R**3TAW × olete this section Preservative ∑ Yes Time Received by Laboratory NONE JAN / CE × × × × aeq@psyber.com EDF Deliverable To (Email Address) T0606793641 [€]ONH 04265/1605 05oma Recommended but not mandatory to com Sampling Company Log Code: California EDF Report? AEGI ЮН Time Received by: Received by REDLAR "Whiles 2795 2nd Street Suite 300 Container **ABBMA BOF**A Lab: 530.297.4800 Fax: 530.297.4808 Time SLEEVE 436051HS Davis, CA 95616 AOV Im 04 Ю 40 10 IO. Sampler Signature: Global ID: 200 234 Date Date Date Time Sampling P.O. Date Project Contact (Hardcopy or PDF To): 916.645.6098 ANALYTICAL LLC applied Engineering & Geology, Inc. P.O. No.: Fax No.: Discount Tire Stan Walker Box 247 Lincoln, CA 95548 1200 | Street Company / Address: **Designation** Project Address: Project Number: Relinquished by: 916.645.6014 Project Name: Sample Phone No.: MW-3 WW4 MW-2 MW-1

KIEF		2795 2nd Street Suite 300 Davis, CA 95616	treet 9561	Sui	te 30	_						•	:	2//	Ch.	7					1				
ANALYTICAL LLC		Lab: 530.297.4800 Fax: 530.297.4808	97.48 97.48	88								Lab	2	Lab No. 72 ()		-			1		_	rage		7	
Project Contact (Hardcopy or PDF To):		California EDF Report?	Ē		- 8 8	port	۲.	✓ Yes	SS	2	Ş		히	Chain-of-Custody Record	욁	nsı	b	R	Ō		and A	Analysis		Request	est
Stan Walker				1		. -										An	Alve	<u></u>	٥	Anslycie Pagnaet				T,	_
Company / Address:	6	Recommended but not mandatory to complete this section:					E .		Secur			_				ĺ	7	2	2		,			AT	
Applied Engineering & Geology, Inc. IBox 247 Lincoln, CA 95648		Sampang	5	2	3	AEGI	i _										十	\vdash	\vdash	F		-		<u> </u>	+
	8	Global ID:			}	710000000									4			\d3	/cr					N/K	
╅	2600	1 4008 / 0000 I	1		اً ع		3	i				_		_	uei				170					2 A	
Project Number: P.O. No.:		EDF Deliv	erabi	<u> </u>	E 69	o (Email Address) aeg@psyber.com	er,c	ë El							плов			, ,,,,,	me)					AAK	
Project Name: Discount Tire		Sampler Signature:	13	J.	7	Month	\vdash	\square	Jun 1	200	\exists	(V 88 6				าแทดด					1 443	
Project Address:	Sampling	oling	1	텵	Container	广	res	Preservative	tive	Ň	Matrix			_				-4-1	A) DI					ZL .	
1200 Street	_			ļ	t ON				-		<u></u>	Beu (3							4 Jing					H 81	sU da
			(H ² 80 [¢]		IH) 340							oriiN as	tiiN Idat	le) Yilnii	gortiN a tsdqso	(T.00S) n	: M8) no	Iron (20	ottorete					1H #2 1	
Sample			mber H lm (H Im (IH Jm (ı			NE	ЯЭТ/						nuisss			น อเตด					H 21	
Designation	Date	Time			720	HC		ICE	ON	-	OS FIIA	_		\dashv		юч		-	IBW			-		_	4
:	4-2605	130a	2 2	3	7			×		×		×	×	×	×	×	×	×	×			-		STD	10 - O
MW-2		1905	2 2	3	1			×		×		×	×	×	×	×	×	×	×	_		\dashv		STD	70-0
MW-3		1135	2 2	3	1			×		×		×	×	×	×	×	×	×	×			-		STD	50-0
MW-4	>	1834	2 2	3	1			×		×		×	×	×	×	×	×	×	×	_		\dashv		STD	10-0
			_				_		\vdash										\dashv			\dashv		_	\dashv
				<u> </u>		-	_										\dashv					\dashv		\dashv	
				_														\dashv	\dashv			\dashv			
				<u> </u>						-															
																						_		_	
																					_	_		4	-
Relifiquished by:		Date // //	Time		ceiv	Received by:	<u>.</u> •						R _e	Remarks:											
Relinquished by:		1000 Pate Date		7	ặ	Received by:	ا ِ اِ اِ	[11,		- 1												
						1																			
Relinquished by:		Date	Time	ě.	ceiv	d be	Lab	Received by Laboratory:	ن خ		1	1	Bill to:	io io											
		509240	1855	10	W	1	Ĵ	1,	B.		1	18	A AEG	Ö									į		
			l	l							1														

Countywide Services Agency

Environmental Management Department

Water Protection Division Cecilia Jensen, Chief

Terry Schutten, County Executive Penelope Clarke, Agency Administrator Mel Knight, Department Director

August 1, 2005

Dorothy Noyes Alice Noves Betty Van Meter P.O. Box 621 Lincoln, CA 95648

Dear Mesdames:

SUBJECT: LOCAL OVERSIGHT PROGRAM SITE NO. F575

DISCOUNT TIRES **1200 | STREET**

SACRAMENTO, CA 95814

On July 29, 2005, this site was submitted for closure consideration to Sacramento County Environmental Management Site Assessment and Mitigation Section (SAMS) staff and Regional Water Quality Control Board (RWQCB) Region 5 representative. With RWQCB concurrence, site closure activities can proceed at this site. Please decommission all groundwater monitoring wells, and dispose of all soil cuttings and purge waters generated by the investigation, remediation and monitoring of the subject site. Once these activities have been completed, a final site inspection will be conducted to verify compliance with our directives, and this Department will issue a "No Further Action" letter.

Please call if you have any questions (916) 875-8467.

Sincerely,

Laura S. (Marshall) McLean, P.G.

Water Protection Division

Site Assessment and Mitigation Unit

LSM:ks

Kathy Amaru – CVRWQCB C:

Stan Walker - AEG

W:\DATA\MARSHALL\1200 | ST\CLOSLET.DOC